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Abstfact

This report contains a complete description of the method for processing the data from Table
Experiments collected by the Maryland Revolving-Field Monitor (RFM). The apparatus used
in these experiments included magnetic-field-sensor coils worn on each of the subject’s eyes
(sensor-coils), two non-coplanar coils attached to the subject’s forehead (head-coil device),
and a sparker device attached to the subject’s head (head-sparker). The raw data recorded
from this apparatus included horizontal and vertical eye angles for both eyes, horizontal,
vertical, and torsional head angles, and distances from the head sparker to each of four
microphones all in real time.

All of the above raw data are processed to produce quantities that can be used to analyze
the eye-movement behavior of subjects who participated in the Table Experiments. Such
quantities include the real-time lines-of-sight of the subject, horizontal and vertical gaze-
errors relative to a given target, table gaze-positions, and target and ocular vergence. All
of these analysis quantities can be determined once the real-time positions of the sighting-
centers of both eyes are known

The body of this work contains a description of the RFM apparatus, descriptions of
various calibration activities performed during the Table Experiments, derivations of the
equations relating the subject’s real-time sighting-center positions to the raw data colected
by the RFM, and derivations of the equations that relate the sighting-center positions to
the analysis quantities mentioned above. The report concludes with three appendixes that
contain Table Experiment calibration details, introductory material regarding vectors and
matrices, and a derivation of the basic equation used to determine the elements of the matrix
describing an arbitrary rotation.
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Chapter 1

Introduction

This document contains a detailed description of the method for converting
the raw data collected in Table Experiments into data suitable for analysis.
Its purpose is to provide derivations of the mathematical equations contained
in the method from first principles. Its further purpose is to provide a suf-
ficiently detailed description so that the method can be implemented in a
computer program. The target audience includes those who are mathemati-
cally sophisticated and those who are not. Appendixes B and C at the end
of this document contain reviews of the relevant mathematics for the latter
type of reader.

The raw data include horizontal and vertical eye-angles for each eye, hor-
izontal, vertical, and torsional head-angles at each RFM burst during a given
trial, and the distance from the head-sparker to each of four microphones for
each strobe of the sparker during a given trial. The processed data include
the direction of lines-of-sight, horizontal and vertical gaze-errors relative to
a given target, table gaze-positions, and target and ocular vergence on each
RFM burst during a given trial.

The fundamental quantities needed for determination of these processed
data are the sighting-centers of the subject’s eyes at each RFM burst
of a given trial. Once these quantities are calculated, the various processed
data can be easily determined

This document begins with a description of the Maryland Revolving-
Field Monitor (RFM) apparatus (chapter 2). This chapter describes the
main components of the RFM, the physical meanings of the data that can
be collected with the apparatus, and the coordinate systems relevant to the
data-processing method described in later chapters. Chapter 3 presents the
major activities performed in Table Experiments both for calibration and for
the collection of raw data. Chapter 4 presents a complete derivation of the



mathematical equations relating the raw data to the real-time sighting-center
positions of the subject. Chapter 5 presents a summary of processing the raw
data into sighting-center positions in algorithmic form suitable for encoding
in a computer program.

Chapters 6 through 8 contain derivations of the equations that relate the
sighting-center positions to the various quantities required for fruitful anal-
ysis of the eye-movement behavior of participants in the Table Experiments.
Chapter 6 covers the definition and computation of the line-of-sight direction
of the subject. In Chapter 7, table gaze positions and gaze errors of a single
eye relative to a given target are related to the sighting-center position of
the eye. And finally, Chapter 8 contains a description of how the Helmholtz
coordinate system axes are determined in terms of sighting-center positions
and how ocular vergence angles are obtained using these axes.

The document concludes with three appendixes. Appendix A describes
the method whereby the sighting-center of the subject’s eye is obtained while
his head is supported on the biteboard. Some details supporting the descrip-
tion of the transformation of a point in sparker coordinates to those in table
coordinates are also provided. Appendix B focuses on the elementary mathe-
matical properties of vectors and matrices. Appendix C contains the deriva-
tion of the rotation formula. This formula defines the elements of the matrix
that describes an arbitrary rotation. The reader unfamiliar with vectors and
matrices should read appendixes B and C first as they provide the mathe-
matical background needed for understanding the derivations presented in
Chapters 4 through 8.



Chapter 2

The Maryland Revolving-Field
Monitor (RFM)

The RFM apparatus contains two major systems for the tracking of head and
eye movements. The first of these is the revolving-magnetic-field monitor
(RMFM) and the second is the sparker tracking system (STS). The RMFM
has the capability of tracking the orientation in space of a magnetic-field
sensor coil in real-time. The STS tracks the position in space of a sparker
device in real-time. Each of these systems will be described in more detail
below. These two devices have commensurate, but different, data-sampling
rates. In what follows, each time-point at which the RMFM collects data
will be termed a ”burst”. Each time-point at which the STS collects data
will be called a "strobe”.

2.1 Revolving-Magnetic-Field Monitor Sys-
tem (RMFM)

The RMFM system consists of two major parts: (1) a machine that pro-
duces three, mutually perpendicular, magnetic fields that revolve at different
frequencies within a certain volume (magnetic-field volume) inside the RFM
chamber, and (2) a sensor-coil device that, when placed inside this volume,
carries an induced current that is dependent on its spatial orientation. A
bank of electronics reads and processes this induced current and also con-
trols the revolving fields.

Each revolving field is produced by two sets of ac-current-carrying coils
mounted on a cubical frame[l] (each set is wound in a "cube-surface coil”
arrangement). Each set of coils consists of five square coils lying in parallel
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planes. These coils produce a magnetic field which oscillates along a fixed
line. The two lines corresponding to the pair of sets of coils are perpendicular
and are 90° out-of-phase causing the superposition of these magnetic fields
to revolve in the plane that contains both lines. The magnetic field produced
by this arrangement is spatially homogeneous throughout a large fraction of
the volume contained inside the cubical frame. See figure 2.1.

There are three such pairs of sets of coils, each pair produces a magnetic
field that revolves parallel to a particular plane at all points in the magnetic-
field volume. The three planes are mutually perpendicular and consist of two
vertical planes and one horizontal plane. The fields in the different planes
revolve at different frequencies (976, 1952, and 3904 Hz) so that the orienta-
tion of the sensor-coil relative to each plane may be determined separately.
The different relative orientations are computed by the electronics in real-
time. In order to maintain the direction of the fields and their frequency of
revolution, three mutually perpendicular reference coils are mounted inside
the RFM chamber and the currents induced in them are measured by the
electronics. The measured reference currents drive servo mechanisms that
vary the current in the coils (and thereby the revolving fields) so that these
reference currents remain strictly a superposition of three sinusoids having
the above three frequencies.

The orientation of a sensor-coil relative to the planes in which the mag-
netic fields rotate is determined by comparing the phase of a particular har-
monic component of the ac-current induced in the sensor-coil with that in-
duced in the reference coil at the corresponding frequency associated with the
magnetic field[2]. The total magnetic field generated in the RFM chamber
volume is the superposition of the three revolving fields. The total ac-current
induced in a sensor-coil immersed in this field will be a superposition of three
sinusoids each having a different frequency. The electronics record this cur-
rent, separate out the components of different frequencies, and then compute
the phase difference between a particular component and that of the corre-
sponding component of induced ac-current in the appropriate reference coil.
The phase difference between corresponding frequency components of the
currents in the sensor coil and reference coil equals the angle (expressed in
radians) between the orthographic projections ov the unit normal vectors of
the two coils onto the plane which contains the magnetic field revolving at
that frequency. The phase difference is then converted by the electronics to
a 16-bit number that is proportional to this angle in minutes of arc which
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Figure 2.1: A single revolving magnetic field
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is then read by computer. The precision of the angle measurement in min-
utes of arc ranges between 0.5 to 2 parts in 10° depending on the meridian.
Each measured angle is stored as a 16-bit number. The sample rate of angles
output by the RFM for Table Experiments is 488 Hz producing an effective
bandwidth for head- and eye-angle measurements of 244 Hz.

The orientation of the planes that contain the revolving magnetic fields
relative to the RFM chamber are shown schematically in fig. 2.2. There
are two vertical planes and one horizontal plane. By convention, one defines
a direction called "magnetic north”. A coil whose normal (perpendicular)
vector points toward magnetic north registers an angle of 225° or 13,500
minarc (minutes of arc) relative to what will be called in this document the
"horizontal plane”. This may be somewhat confusing as the plane is actually
vertical but the rationale for the term lies in the fact that the angle records
a rotation of the eye when the subject looks horizontally while facing mag-
netic north. The absolute values of the angles measured relative to a plane
are unimportant. Only differences in angles matter. Thus the conventional
reference position for this plane in this document will be magnetic north.

The plane that is perpendicular to the "horizontal plane” and is oriented
roughly parallel to the floor will be called the "vertical plane”. The angle
between the sensor-coil plane and this plane (called the ”vertical angle”)
changes when a subject (facing magnetic north) looks up (or vertically) even
though the plane itself is horizontal. When the normal vector of a sensor-
coil points toward magnetic north, the vertical angle registers 135° or 8100
minarc. By convention in this document, the reference position of this plane
will again be magnetic north. The third plane is rarely used for collecting
eye-angle data in Table Experiments because the'subject sits roughly facing
magnetic north while manipulating objects on the table. This causes the
third signal to be very weak and thus detecting phase in this plane can be
unreliable. As this angle would roughly record a rotation of the eye around
the line-of-sight (torsion), this plane will be called the "torsional plane”.
Special coils can be used to record such eye torsions but they have not been
used to date in the Table Experiments and no further discussion of them
will be presented here. This plane is used extensively, however, for recording
torsional head movements as will be described later.

The RMFM system is the only instrument in the world that taps the
advantages of measuring orientation with the phase-detecting principle in
any direction in three-dimensional space. The cube-surface coil arrangement,

11
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Figure 2.2: Schematic drawing of the RFM chamber (top view)
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which is in use in at least one other laboratory, makes it possible to achieve a
homogeneous revolving magnetic field in a volume large relative to the space
needed to perform the Table Experiments. This is not the case with other
systems, which employ pairs of Helmholtz-coils to produce the magnetic field.
Phase detection on all three meridians (north-south and east-west vertical
meridians as well as the horizontal meridian) allows absolute calibration of
the orientation of the sensor-coil with respect to a reference frame fixed in
the laboratory.

2.2 Sparker Tracking System (STS)

The sparker tracking system also contains two major parts (1) a set of four
microphones mounted on a rectangular frame which is situated above the
cubical frame that surrounds the magnetic field volume, and (2) devices
called ”sparkers” which are rods that have electrodes at one end separated
by a tiny air gap. At the rate of 61 times per second (sparker strobe rate), a
large potential difference is placed across these electrodes causing a spark to
jump across. Each time this happens, a sharp, high-pitched (60 kHz on the
leading edge) sound is emitted due to the heat from the spark. The sound
travels to each of the microphones and is detected by each. The detected
sound is fed into the STS circuitry. Since this circuitry also controls the
sparker, it can determine the delay between the time the voltage was applied
and the time the sound was detected by the microphones. These delays are
output as distances (since the distance is proportional to the time delay via
the speed of sound). Each microphone is labeled with a letter (i.e. A, B, C,
D) and figure 2.3 shows the placement of the microphones around the RFM
chamber. Note that the z-axis points down in this figure.

The position of a sparker can be determined by using the distances from
any three of the four microphones. If the coordinates of the microphones are
known in some system, then three distances determine the coordinates of two
candidate points for the position of the sparker. The fact that the sparker
must be inside the magnetic field volume uniquely determines the sparker
position. The details of the method for determining the sparker position will
be presented in chapter 4.
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2.3 RFM Worktable

In addition to the RMFM and the STS, one further major piece of apparatus
is used in Table Experiments. This is the RFM Worktable. This device is
a flat surface on which there is a 14 x 11 rectangular grid of holes. Various
rods that have either LED’s or sparkers mounted on them can be placed in
these holes. When a subject depresses one of these (LED) rods, a button at
the bottom of the hole is activated and the event is output to a computer
via circuitry connected to the table. In addition, there are small red lights
mounted on the table adjacent to each hole which are used to indicate the
setup for different trials during an experimental session. Finally there are
infra-red photo-sensors just on either side of each hole which can be used to
detect a subject touching the hole itself with his finger tip or to detect a rod
entering or leaving each hole. These last photo-sensors have not yet been
used in Table Experiments. See fig. 2.4.

The holes in the table are precisely machined such that their centers are
45 millimeters (mm) apart along both rows and columns. When a subject is
seated in the RFM chamber and is facing magnetic north (his normal working
position), the grid of holes appears as 11 rows and 14 columns. The farthest
holes are just within arm’s reach as the subject sits and moves naturally.
As will be seen in the next section, these holes, in part, define the table
coordinate system. All derived quantities are ultimately expressed in terms
of this coordinate system.

2.4 RFM Coordinate Systems

There are three main coordinate systems that are defined for the RFM. They
are (1) the Sparker Coordinate System (SCS), (2) the RFM Coordinate Sys-
tem (RFMCS), and (3) the Table Coordinate System (TCS). The planes in
which the different magnetic fields revolve define the RFMCS and they are
assumed parallel to the planes that define the TCS. The RFM Worktable
has been placed so that this assumption is valid to within an experimental
error of less than 10 minarc on every meridian. Thus only the SCS and the
TCS will be described below.

A Cartesian coordinate system may be uniquely specified in the following
way. First, specify the position of the origin relative to some landmark. Next,
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choose two other points (noncollinear with the origin) which, along with
the origin determine a plane. Lines from the origin to each of these points
determines a pair of axes. These lines are not necessarily perpendicular
but such axes can be determined from these by using the Gram-Schmidt
orthogonalization procedure. Next, define the third perpendicular axis by
taking the cross product of the orthogonal unit vectors that define the axes
in the plane. Finally, assign positive directions along these axes.

2.4.1 The Sparker Coordinate System (SCS)

The origin of the Sparker Coordinate System is taken to be just inside the
front of microphone A and the xy-plane is defined by similar points in micro-
phones B and D (see fig. 2.3). The x-axis lies along a line from microphone A
to microphone D. Since the microphones are mounted on an approximately
rectangular frame, the y-axis could be taken to be along the line from mi-
crophone A to microphone B and the assumption made that these axes are
perpendicular. However, this is not necessary because the straight-line dis-
tance from D to B can be measured. Therefore the y-axis is defined to lie
along the line lying in the plane and to pass through the origin at A such that
it is perpendicular to the x-axis already defined. The z-axis is determined
by the cross product of the y-axis with the x-axis. This axis points down-
ward. Hence points inside the magnetic field volume (in particular, sparker
positions) have a positive z-coordinate. This coordinate system is shown
schematically in fig. 2.3.

2.4.2 The Table Coordinate System (TCS)

The TCS is the fundamental coordinate system used in the method for pro-
cessing of the raw data. All quantities that are dependent on a coordinate
system (e.g. sighting-centers and table gaze positions) will ultimately be
expressed in terms of this system. One reason for this is that it is in this
coordinate system that target coordinates are most conveniently determined.

The TCS is defined in terms of landmarks that are attached to the RFM
Worktable. For a subject facing magnetic north inside the magnetic field
volume, the holes form a rectangular grid having eleven rows with each row
containing fourteen holes. A system for labeling these holes has been stan-
dardized and is as follows. Each hole is labeled by its row number and column
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Figure 2.3: The Sparker Coordinate System (SCS)
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number. For a subject in the orientation described above, the hole at the
lower left is labeled row one and column one. Row numbers increase away
from the subject towards magnetic north and column numbers increase to
the right. A top view of the RFM Worktable is shown in fig. 2.4 below.

The origin of the TCS is defined to be above the center of the hole in the
first row and the seventh column at the height of the low sparker. The xy-
plane contains this point and is parallel to the surface of the RFM Worktable
which is assumed to be planar. The x-axis lies in this plane and runs above
the centers of the holes in column seven on the table; the positive sense of
this axis is toward magnetic north. The y-axis is perpendicular to the x-axis
and runs above the centers of the holes in row one; the positive sense of
the x-axis is in the same direction as increasing column number in row one.
The z-axis is perpendicular to both of these axes and is defined by the cross
product of a unit vector along the y-axis with a unit vector along the x-axis.
Both the TCS and the SCS are left-handed coordinate systems.

2.5 Types of Measurements Collected in the
Table Experiment

In Table Experiments, a subject is fitted with an eye coil in each eye, the
head-coil apparatus, and a head-sparker. The reason for collecting these
data is to determine where on the RFM Worktable the subject is looking
while performing a series of tasks such as tapping various LED rods in a
specified order. The types of measurements that are collected are horizontal
and vertical eye-angles from each eye; horizontal, vertical, and torsional head-
angles from the head-coil apparatus; and the distances from the head-sparker
to each of the four microphones. Each of these types of measurements will
be described below.

2.5.1 Horizontal and Vertical Eye-Angles

At the beginning of a Table Experiment session, the subject is fitted with
a Skalar-Delft silicone annulus sensor-coil in each eye (eye-coil). Imbedded
in the silicone annulus are 9 turns of very thin copper wire wound into a
tight coil. The twisted leads to this coil in the annulus are connected to the
RFM circuitry which detects the current induced in the coil. This allows
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Figure 2.4: The top view of the RFM Worktable showing the TCS
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the measurement of the horizontal and vertical eye-angles during each RFM
burst in a trial. '

To understand the physical meanings of these angles, one imagines the
eye-coil to lie in a plane and then imagines a unit vector, perpendicular to
this plane pointing away from the eye. If the eye-coil is perfectly centered
on the subject’s eyeball, then this unit vector will point directly along the
subject’s line-of-sight. This can never be known to be the case and the
calibration techniques used to determine the correction for the angular offset
between the sensor-coil’s normal vector and the subject’s line-of-sight will
be described in chapter 3. The vertical eye-angle is the angle between the
orthographic projection of this unit vector onto the TCS xz-plane and the
TCS x-axis as shown in fig. 2.5. The horizontal eye-angle is the angle between
the orthographic projection of the vector onto the TCS xy-plane and the TCS
x-axis as shown in fig. 2.6.

For the vertical-angle case, one imagines a flashlight shined along the
negative TCS y-axis. The unit vector perpendicular to the eye coil would
then cast a shadow on the TCS xz-plane. The angle between this shadow and
the TCS x-axis is the vertical angle. A similar paradigm can be constructed
for the horizontal angle, a light is shined along the negative TCS z-axis and
a shadow is cast onto the TCS xy-plane. The angle between this shadow and
the TCS x-axis is the horizontal angle.

The vertical eye-angle is equivalent to a "first Helmholtz angle” (H;) and
gives the elevation of the plane of regard above the reference eye position if
the TCS were fixed in the orbit of a subject’s eye. The horizontal eye-angle
is equivalent to a "first Fick angle” (F}). Measurement of these two angles
affords a unique determination of the spatial orientation of the subject’s
eye in space. From these angles a ”"second Helmholtz angle” and a "second
Fick angle” can be determined. These mathematical relationships will be
presented later.

2.5.2 Horizontal, Vertical, and Torsional Head-Angles

The RFM head-coil device consists of two sensor coils: a large coil and a
smaller coil, which are mounted such that their planes are approximately
perpendicular. When the device is fitted on the subject’s forehead, the large
coil lies roughly in the plane of the forehead and the smaller coil lies roughly
in a vertical plane and perpendicular to the large head-coil when the subject’s
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head is positioned naturally. See fig. 2.7.

The horizontal and vertical head-angles are measured by reading the hor-
izontal and vertical angles from the large head-coil, just as described above
for the corresponding eye-angles. The torsional head-angle is the vertical an-
gle of the smaller head-coil. The horizontal angle registers head movements
when the subject shakes his head as in saying "no”. The vertical angle reg-
isters head movements when the subject nods his head as in saying "yes”.
The torsional angle registers movements when the subject’s head tilts toward
either shoulder. These data types are the same as the eye-angles, namely, the
angle between the projection of the unit vector perpendicular to the smaller
head-coil onto the TCS yz-plane and the TCS y-axis.

It is important to collect here the precise definitions of the three head-
angles measured by the RMFM because they will be used extensively in
the mathematics developed in Chapter 4. The horizontal head-angle is the
angle between the orthographic projection, onto the TCS xy-plane, of the
unit vector normal to the large head-coil and the TCS x-axis. The vertical
head-angle is the angle between the orthographic projection, onto the TCS
xz-plane, of the unit vector normal to the large head-coil and the TCS x-axis.
The torsion angle is the angle between the orthographic projection, onto the
TCS yz-plane, of the unit vector normal to the smaller head-coil and the
negative TCS y-axis. Figure 2.12 illustrates the torsion angle as measured
by the RMFM.

2.5.3 Sparker Distances

The STS outputs the distance from the sparker to each of four microphones
as is shown in figure 2.8 below. If the coordinates of the microphones are
known in some coordinate system, then the coordinates of the sparker can
be determined by triangulation on any three microphones. How this is done
is presented in chapter 4.
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Chapter 3

Table Experiments

In this chapter, the major activities performed in Table Experiments will
be described briefly. Most of the description will focus on the calibration
procedures. Table Experiments performed to date actually consisted of two
different sub-experiments. The first sub-experiment focused on the hand-eye
coordination skills of the subject. The second sub-experiment was devoted
to the investigation of eye movement behavior when a subject was perturbed
during a saccade (”push experiments”).

Four subjects participated in these experiments. Each subject was run in
several sessions. The word ”session” is defined to be an event during which
a large amount of data was collected for a single subject. During a session a
subject was fitted with eye-coils, head-coils, and head-sparker and performed
activities that were repeated over many trials. The term ”trial” will be used
here to denote a short period during which eye-angle, head-angle, and head-
sparker data were collected. The length of a trial ranged from 2 to 10 seconds
and a session consisted of as many as 100 trials.

3.1 Calibration Measurements

There were three activities performed that will be called ”calibration mea-
surements” in this document. The first type of measurement was devoted
to the calibration of the sparker measurements. The second measurement
involved the determination of the offset of the eye-coil from the subject’s
line-of-sight when the coil was placed on the eye at the beginning of a session.
The last type of measurement was performed for the purpose of determining
the coordinates of the sighting-center for each of the subject’s eyes when the
subject’s head was supported on the biteboard. The first and third of these
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measurements were performed before the main sessions began. There were
two methods used for the determination of the subject’s sighting-center. A
description of the method finally used will be presented in Appendix A. The
other two measurements are described below.

3.1.1 Sparker Calibration

The main purpose of the sparker calibration measurements was to determine
the conversion factor between the distance units output by the STS (”sparker
units”) and millimeters. All distance measurements are generally expressed
in millimeters. This was done as follows.

A single sparker was placed in hole (1,7) of the RFM Worktable and
the distances from this sparker to each microphone was measured using a
vernier caliper. Sparker data were then collected. These data were then
averaged over a trial which yielded distances from the sparker to each micro-
phone in sparker units for that trial. The trial was replicated later and the
same averages were computed to allow for modest (< 2 °F') changes in room
temperature during Table Experiments which usually lasted about 20 — 30
minutes. The ratio of the distance to a microphone in millimeters to the
same distance in sparker units then gave the scale factor (conversion factor)
for that microphone. The two average scale factors for the trial were them-
selves averaged. These factors agreed to about three decimal places for each
microphone. See fig. 2.8 above.

3.1.2 Eye-Coil and Head-Coil Offset Calibration

During each experimental session, eye-coil-offset calibration measurements
(mirror trials) were performed. Generally, these measurements were per-
formed only during the first two trials of a session, one trial for each eye.
This was also done every time a new coil was placed on a subject’s eye
(occasionally a coil broke during a session and a new coil inserted so these
measurements were sometimes performed more than once during a session).

A device containing a front-surface mirror was constructed so that it could
be mounted such that the plane of the mirror was approximately parallel to
the TCS yz-plane and such that the mirror surface faced the subject while his
head was supported on a biteboard. Then, while on the biteboard and with
one eye covered, the subject fixated the image of his pupil in the mirror.
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In this situation, the line-of-sight of the uncovered eye of the subject was
construed to be parallel to the TCS x-axis and horizontal and vertical eye-
angle data were then collected. This procedure was repeated for the other
eye. The readings were averaged over the trial to yield final offset values.
See fig. 3.1; note that, in this figure, the offset of the eye-coil is exaggerated
for clarity.

This determined the error of placement of the coil on the eye. If the coil
had been placed perfectly, the horizontal reading would have been as close
to 13,500 minarc as possible given the small error in aligning the TCS x-axis
on the table with magnetic north and given the fixation error. Similarly the
vertical reading would have been as close as possible to 8100 minarc. Offsets
in both horizontal and vertical were generally smaller than a degree which
means that the annuli were relatively well-centered on the eyeball - i.e. the
unit vector normal to the annulus was nearly parallel to the line-of-sight. See
[4] for the significance of this offset error for estimating the direction of the
line-of-sight when the head is free to move about three axes.

It is essential for the computation of the subject’s real-time sighting center
to have head-angle readings for a case in which the sighting-center position
is known. During these initial eye-coil calibration trials, head-angle readings
were also collected. Every time a subject was fitted with the head-coil device,
the placement of the device on the forehead, like the placement of the annulus
on the eye, was slightly different. The head-angles collected at each RFM
burst during these two calibration trials were averaged to yield initial head-
angle readings. The use of these head-angle readings will be discussed in
more detail in the next chapter.
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Chapter 4

Calculation of the Subject’s

Sighting-Center P051t10n in
Real-Time

To be able to calculate real-time quantities suitable for data analysis (e.g.
table gaze positions or gaze errors relative to a given target), one must first
compute the TCS position of the sighting-center of each subject’s eye during
each RFM burst on a trial. The data needed for such a calculation fall
into two main categories: (A) static-head measurements and (B) free-head
measurements. The first category of measurements are performed while the
subject’s head is supported on a biteboard. These static-head data include
(1) the sighting-center position of each eye, (2) head-angle data, and (3) head-
sparker data. Measurements in the free-head category include (4) head-angle
data at each burst of the RFM during a given trial and (5) head-sparker data
at each strobe of the sparker during the trial. Except for data type (1), all
of the above are raw data and were collected in the experiments performed
to date. The method for determining the first data type is the subject of
Appendix A and will not be discussed here. All of what follows in this
chapter refers to only one of the subject’s eyes. The procedure is the same
for the other eye.

The broad method for obtaining the subject’s real-time sighting-center
position is based on a simple idea. If the subject’s sighting-center po-
sition is known when the head-sparker position and head-coil ori-
entation are also known, as they are when measurements made while the
subject’s head is supported on a biteboard, then, since the head plus eye plus
head-sparker are assumed not to move relative to each other, a new head-
sparker position and a new head-coil orientation together uniquely
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determine the new sighting-center position. See fig. 4.1. That is,
there is a geometrical relationship among sighting-center position, head po-
sition, and head orientation due to the fact that the head-coil plus eye plus
head-sparker is a rigid body. Note that this implies the assumption that the
head-sparker and the head-coil devices do not appreciably wiggle or slip sys-
tematically while fixed to the subject’s head. The head-sparker and head-coil
devices were designed so that such wiggling and slippage is minimized. It is,
therefore, the judgment of the experimenters that it is reasonable to make
the rigid-body assumption.

The derivation of the geometrical relationship among the head-coil plus
eye plus head-sparker is the core of this chapter. The plan of the chapter
is as follows. First, the broad geometrical relationship mentioned above
will be derived by separating it into a rotation of the head followed by a
translation of the head. After this, the method for determining the TCS
coordinates of the head-sparker given the head-sparker data will be derived
(this is needed for the translation part of the preceding step. The rotation
equations will be derived (the most critical derivation) by two independent
methods. Two methods are used to derive the same final result as this result
is rather complicated and one gains greater confidence in the answer by
using two different derivations. Finally, the relationship between the angles
contained in the final rotation matrix and the angles measured by the RFM
is derived.

4.1 Finding the Sighting-Center Position

In this section, the fundamental equation for finding the TCS coordinates of
the sighting-center of the eye in real-time will be derived in terms of measured
quantities. The sections that follow will focus on the methods for obtaining
the different terms in that equation.

As described earlier, the basic idea behind the method for obtaining the
sighting-center position lies in treating the system of head-sparker plus head-
coils plus eye as a rigid body. In this document, the configuration of this
rigid body will be specified if both its position and its orientation are
given.

The position of the body is specified if the coordinates of a point
fixed in the body are given relative to some coordinate system. For
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Figure 4.1: Change of configuration
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the body of interest, this fixed point is the tip of the head-sparker and the
coordinate system is the TCS.

The orientation of the body is specified if angles between two
of the coordinate axes and a reference line fixed in the body are
given and if the angle between a second body-fixed reference line,
perpendicular to the first line, and one of the axes of the coordinate
system is also given. For the case at hand, the first body-fixed reference
line is defined to be that line perpendicular to the large head-coil and the
two angles are those that its orthographic projections onto the TCS xy-, and
xz-planes make with the positive TCS x-axis (these are the horizontal and
vertical head-angles respectively). The second reference line is perpendicular
to the smaller head-coil and the angle that must be specified is the angle that
the line’s projection onto the TCS yz-plane makes with the negative y-axis
of the TCS (this is the torsional angle). Fixing these three angles uniquely
specifies an orientation of the head-sparker plus head-coil plus eye rigid body
(hereafter referred to as the "head”).

Once the configuration of the head is specified, the transforma-
tion to any other configuration consists of a rotation and transla-
tion. By the term ”transformation” is meant the mathematical equations
that relate the position of a point fixed in the head (e.g. the sighting-center)
when the head is in the initial configuration to the coordinates of the same
head-fixed point when the head is in the final configuration. The word ”trans-
lation” refers to a type of transformation that leaves the angles that spec-
ify the orientation of the body unchanged. The term ”rotation” is another
type of transformation in which the coordinates of the head-fixed reference
point remain constant. These two transformations can be performed inde-
pendently. That is, a rotation can be performed that leaves a given head-
fixed reference point at the same physical position in space. Conversely, a
translation can be performed that leaves unchanged the angles specifying the
orientation of the head. See fig. 4.2.

Thus the transformation of the head from the initial configuration to
the final configuration is performed in two steps: (1) The head is rotated
about its reference point (i.e., the tip of the head-sparker) such that the
angles defining its orientation have their correct values in the final head
configuration, and (2) the head is translated so that the reference point is
located at the coordinates of the final head configuration.

It is convenient to define a standard configuration and then to specify
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all other configurations by transformations of the head from the standard
configuration. The standard configuration will be as follows. The head-fixed
reference point (i.e. head-sparker) is located at its position when the subject’s
head is supported on the biteboard and the head is oriented such that the
large head-coil is perfectly aligned with the yz-plane of the TCS and the line
formed by the intersection of the two head-coils is exactly parallel with the
TCS z-axis. (See fig. 4.3)

4.1.1 Transformation of the Rigid Body

Let rpp be the vector that locates the tip of the head-sparker when the
subject’s head is supported on the biteboard during the calibration trials of
a session and let rep be the vector that locates the sighting-center position
under the same circumstances. The second vector was determined prior to
the beginning of the main sessions of the experiment and is assumed known
here. How this was done is described in Appendix A. Thus the vector that
points from the head-sparker to the sighting-center while the subject’s head
is supported on the biteboard is

Xeb = T'eb — Thbs (4.1)
and the above equation can be rearranged to read:
Yeb = Fhb + Xeb. (4.2)

It is worth noting that the length of X (which is the distance from head-
sparker to sighting-center) cannot change because of the rigid body assump-
tion. See fig. 4.4.

This is the fundamental formula, it applies not only here, but for any
configuration of the head. In words it may be stated simply as follows: the
vector from the origin to the sighting-center equals the vector from the origin
to the sparker plus the vector from the sparker to the sighting-center. The
statement of the above formula for an arbitrary burst of the RFM during a
trial is

[re = rp + Xe. | (4.3)

In the above formula, re is the vector from the origin of the TCS to the
sighting-center, ry is the vector from the origin to the head-sparker, and X.
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is the vector from the head-sparker to the sighting-center. Both re and xe
are time-tagged at an arbitrary burst of the RFM during a trial and ry, is the
vector described above time-tagged at the most recent strobe of the sparker
at the time of the RFM burst (see fig. 4.4).

The transformation from the standard configuration of the head to an-
other configuration can easily be described in terms of the above equation.
In the standard configuration (labeled by 0), the above equation becomes

Te0 = I'hb + Xe0, (4.4)

where the b subscript in the first vector on the right-hand-side of the above
equation refers to "biteboard” as the sparker position in the standard config-
uration is the biteboard position. And, in the final configuration, the formula
is the same as Eq. 4.3 above

re =Ih + Xe. (4.5)

Now in the first step of the transformation described above, the head is
rotated about the head-sparker point rpp. This leaves this vector unchanged
and rotates Xep into the vector xe. This may be represented by the equation.

Xe =R(0h,0v,9¢)xeo, (46)

where R is the 3 x 3 matrix that represents the rotation and depends only on
the head-angle data. In the above equation, 8} is the horizontal head-angle,
6, is the vertical head-angle, and 6, is the torsional head-angle all of which
are measured in the final head configuration referenced to magnetic north
and expressed in radians. The second step is a translation of the head to the
new sparker position. This is represented by the equation

Thl = Thb + Tt. (4.7)

Where ry is a vector from the standard sparker position to the new sparker
position. Hence one can write

re1 =(rnp + re)+R(6h, 0v, 6:)%e0. (4.8)

In the above equation, one now sees clearly the rotation, represented
by R, and the translation, represented by ry. The above general equations
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Figure 4.4: The fundamental equation
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may now be applied to the case of interest. It is important here to clearly
distinguish those quantities that are measured from those that are wanted.
Consider then the situation when the subject is on the biteboard. Define

rhb = the position of the head-sparker on biteboard (measured),

reb = the position of the sighting-center on biteboard (measured),
Xeb = vector from sparker to sighting-center position on biteboard.

Then Eq. 4.3 becomes
Ieb = I'hb + Xeb- (49)

Since both rep and ryp, are measured, the vector xqp can be found

Xeb = reb — Fhb- (4.10)

Now apply Eq. 4.3 to the standard configuration in which the head-
sparker is in the biteboard position. Define

reo = sighting-center position in standard configuration,

Xep = vector from sparker to sighting-center in standard configuration.

For this case the basic equation is
Teo = Ihb + Xeo. (4.11)

The vector Xep can be determined because the readings of the head-coils
in both the biteboard and standard orientations are known. The biteboard
readings are measured and the standard ones are known by construction or
are measured. Both the horizontal and vertical readings of the large head-coil
are zero in the standard orientation and the reading of the smaller head coil
has the value of the non-orthogonality angle whose measurement is described
later in this chapter.

All transformations will be referenced to the standard configuration. That
is, all rotations will be rotations of the vector xep and all translations will be
translations of ryy. Thus to transform from the standard configuration to
the configuration on the biteboard one must perform a rotation of xe¢ only
since the sparker position does not change. This gives

Xeb =R(0hoa 01}0, oto)xeo, (412)
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where R(050,040,0:,) is the matrix that describes the rotation of Xeg into Xep
and the head-angles are those measured while the subject is on the biteboard
during the calibration trials of a session. The value of R(6},,040,6:) can be
determined from these head-angles alone. Hence all of the quantities in the
above equation are measured except the vector Xeg. One must solve for this
vector because it is used as the reference vector. This is easily done by left-
multiplying both sides Eq. 4.12 by the inverse of R(60,8y0,0:) and using
Eq. 4.10:

Xe0 =R;1 (ohm 0o, otO)(reb - rhb)- (4-13)

The above equation gives the vector from the head-sparker to the sighting-
center in the standard configuration completely in terms of measured quan-
tities.

Finally, consider once more the case of the head configuration at an ar-
bitrary RFM burst described by Eq. 4.8. The vector r¢ in that equation
stretches from the standard head-sparker position (on biteboard) rpp, to
the current arbitrary sparker position ry. Since both of these positions are
measured rg is obtained as

't =Ty — Chb.

The above equation along with Eq. 4.13 can be inserted into Eq. 4.8 to
obtain the equation for the subject’s sighting-center at an arbitrary RFM
burst during a trial completely expressed in terms of measured quantities:

re = rn+R(01,0,,0:1)R(01o, 00, 010) 7} (Yeb — Thb)- (4.14)

The vector ry, is the head-sparker position at the most recent sparker strobe
before the current RFM burst, (85,0,,0;) are the head-angles at the RFM
burst, (8ko,0v0,0:) are the head-angles measured when the subject’s was
supported on the biteboard during a calibration trial, rep locates the posi-
tion of the subject’s sighting-center during the calibration trial , and ryp is
the head-sparker position during the calibration trial. Eq. 4.14 is the work-
ing equation that is used to determine the subject’s sighting-center at an
arbitrary RFM burst during a trial.

It is clear from the above equation that there are two basic quantities that
must be determined from raw data: (1) the TCS coordinates of the head-
sparker, and (2) the rotation matrix. The equations for these quantities in
terms of raw data are derived in the next two sections.
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4.2 Calculation of the Sparker Position

The data needed for calculating the sparker position are (1) any set of three
of the four distances (in sparker units, with corresponding scale factors) from
the sparker to the microphones, (2) the 2 distances between adjacent micro-
phones in the subset of three microphones used, and (3) the diagonal distance
between the two non-adjacent microphones in the subset. The derivation pre-
sented below gives the TCS x-, y-, and z-coordinates of the sparker position
in terms of the above data.

The major steps in the derivation of these equations are, (a), to find the
coordinates of the sparker in the Sparker Coordinate System (SCS) and then
(b) to use the matrix that transforms SCS coordinates into TCS coordinates.
This matrix was obtained before the main sessions of the experiments began
and the procedure for its determination will be described below. Its numerical
value is given in Appendix A.

The derivation of these equations is again based on a simple idea. Since
the distances from the sparker to each of three microphones is known, the
sparker must simultaneously lie on three independent spheres, each sphere
centered on a different microphone and of radius equal to the distance from
the sparker to the microphone. The intersection of two overlapping spheres
is a circle, a third sphere intersects this circle at two points. One of these
points is the sparker position and is below the plane of the microphones
and the other is above the plane of the microphones. Since the SCS has its
positive z-axis pointing downward, the sparker location will have a positive
z-coordinate in the SCS. This uniquely specifies the sparker position.

In the following derivation, microphone C is not be used because it some-
times proved unreliable whereas the others did not.

4.2.1 Finding the SCS Coordinates of the Sparker

Let d4, dp, and dp be the distances from the sparker to microphones A, B,
and D in millimeters respectively. See fig. 2.8. Also let s4, sp, and sp be
the scale factors for the same set of microphones. Then if r4, rg, and rp are
the corresponding distances measured in sparker units, then

dA =84°T4, (415)
dg = sp g, (4.16)
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dD = S8p ‘' rp. ' (417)

These distances, now expressed in millimeters, are the radii of three distinct
spheres, each centered on a different microphone. The analytic equation of
a sphere whose center is at the point (zo, yo, 20) and whose radius is g is

(z = 20)" + (y — v0)* + (2 — 20)" = 10, (4.18)

where (z,y,2) is an arbitrary point on the sphere. Now, by definition of
the SCS, microphone A is at the origin (0,0,0), microphone D is at the
point (zp,0,0), where zp is the distance between microphones A and D
(equal to mdda, see fig. 2.8). And letting the coordinates of microphone B
be (zB,yB,0) the Pythagorean theorem gives, for right triangles ABE and
EBD,

z4 + y% = (mdab)® (4.19)

and,

(mdda — zg)* + y% = (mdbd)?. (4.20)

Eqs. 4.19 and 4.20 form two equations with two unknowns and have the
following solution

(mdda)? 4+ (mdab)? — (mdbd)?

B = 3. (mdda) ! (4:21)

and,
1

yp = ((mdab)? — 2%)* . (4.22)

Now, if the sparker is assumed to be at the unknown point (zs, ys, 2s) then
this point is common to the three spheres whose equations are

(z5)* + (ys)* + (25)* = d}, (4.23)

for microphone A, and
(zs —zB)* + (ys — yB)* + (25)* = dj, (4.24)

for microphone B, and
(zs — 2p)* + (ys)* + (2s5)* = dp, (4.25)
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for microphone D. This set of three equations may be solved for the three
unknown coordinates, (zs,ys, zs), of the sparker position in the SCS. The
solution is

2 A2
xs:m, (4.26)
2~.’17D
_ah+yh - (2) b+ L - dh) + 4L - d} (2
Ys = 2yB ) .
zs = (df — 2% - y3)2. (4.28)

where in the last equation the positive square root must be taken to ensure
that the sparker position lies inside the magnetic field volume.

If the diagonal distance mdbd between microphones B and D is not mea-
sured, then the above equations may still be used by assuming that the
microphone frame is exactly rectangular. In this case one sets zg = 0, and
yp = mdab in the above equations. Equations 4.26 and 4.28 are unchanged
by this and Eq. 4.27 becomes

(mdab)® + d} — i,

= 2
ys 2 - mdab (4.29)

4.2.2 Transforming From SCS to TCS Coordinates

The transformation of the coordinates of a point from the SCS to the co-
ordinates of the same physical point in the TCS consists of a translation
and a rotation. If (zs,ys, zs) are the coordinates of the sparker in the SCS
and (z,y, z) are its coordinates in the TCS, then the transformation has the
following form(3] ’

z = Ryzs + Rigys + Rizzs + 27, (4.30)
¥y = Ruzs + Ryys + Razzs + yr, (4.31)
2 = Ra1x5 + R3oys + Razzs + 27 (4.32)

These equations can be summarized in matrix form:

z Ry Ry, Riz 27 ;::
Yy | =| Ba R Ru yr 2s (4.33)
z Rs1 Rs; Ras yr 1
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The 3 x 3 submatrix containing R’s is the matrix that rotates the SCS coor-
dinate axes into those of the TCS. The z7, yr, and zr are the translations
along the x-, y-, and z-axes respectively that take the SCS origin into the
TCS origin. Matrices shall, in this document, be denoted by capital letters
set in light type as below:

Rin Ry Rz zr
A=| Rn Ry Ry yr |, (4.34)
Rs; Rs; Ras yr

and three-component column vectors shall be denoted by bold-face, lower-
case letters just as with vectors:

s
x=| v |, (4.35)
zs
and four-component column vectors are denoted by light-type, lower-case
letters:

zs
y=| ¥ 1. (4.36)
zSs
1
Thus Eq. 4.33 can be written as
x =Ay. (4.37)

The procedure for determining the matrix A of transformation from the
SCS to TCS coordinates was as follows. Sparkers were placed at N different
locations on the RFM Worktable (N = 18, see Appendix A for the positions)
and sparker data were collected for each. The TCS coordinates of each
sparker was known in advance and from the sparker data the SCS coordinates
of all N sparkers can be determined as described in the last section. This
yields a total of N equations like Eq. 4.37:

X,;=Ay,', 1= 1, ceey N. (438)

Since N is larger than the twelve elements of the matrix A there are more
equations than unknowns and these elements can be estimated by the method
of least-squares.
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The simplest way to get the least-squares solution is to build two super-
matrices that summarize all NV of the above equations in one matrix equation.
The first supermatrix (X) is formed by making each of its columns one of
the x; (which is a 3 x 1 matrix) making it a 3 x N matrix:

(xl)l o (xN)l
X={ Gy - o (x| (4.39)
(X1)3 o (XN)s

We form the other supermatrix (Y) in the same fashion yielding a 4 x N
matrix:

R

_ Y1)z + = \UN)2

Y= (y1)3 o (yN)a (4'40)
(y)a - - - (yn)a

Thus all N equations in Eq. 4.38 are included in the following equation
X = AY.

All of the elements of both X and Y are known and when this equation is
solved for A, it corresponds to the least-squares solution. The solution is

A= (XYT)(YYT)™,

where Y7 denotes the transpose of Y. The result of this calculation for the
matrix A is given in Appendix A. And so to find the TCS coordinates of a
point given the SCS coordinates one uses Eq. 4.37 with the matrix given in
Appendix A.

4.3 Calculation of the Rotation Matrix

In this section, the transformation that rotates the vector Xeg, the vector
from head-sparker to eye in the standard head-configuration, into the vector
Xe, the vector from head-sparker to eye in an arbitrary head-configuration
will be derived. The data required for determining this transformation are
the three head-angles in the arbitrary configuration: (1) @, the horizontal
head-angle, (2) 0,, the vertical head-angle, and (3) 0;, the torsional head-
angle. It is important to note that these angles are obtained by subtracting
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13, 500 minarc from the raw horizontal angle to get 8, and subtracting 8, 100
minarc from the raw vertical and torsional angles and expressing the result
in radians to get 8, and 6, respectively. The above numbers (13500 and 8100
minarc) are the angles that would be measured by the RFM if the subject’s
head was in the standard configuration. This causes 8, 8,, and 8, to be zero
in that configuration.

The plan of this section is as follows. The first subsection describes the
information needed to completely and uniquely specify a rotation. Next fol-
lows a discussion of the Fick, and Helmholtz descriptions of eye positions
(orientations) and how one may obtain the Fick coordinates if the Helmholtz
coordinates are known and vice versa. In the penultimate subsection, the
rotation matrix will be derived by two independent methods: the active ro-
tation method and the passive rotation method. The final rotation matrices
obtained in these derivations are identical. The reason for presenting two
different derivations is that the final rotation matrix has a somewhat compli-
cated form and that having two separate derivations should give the reader
greater confidence that this complicated form is correct. The final rotation
matrix obtained from these derivations depends upon the three Fick angles
that describe the orientation of the head. Not all of these Fick angles are
measured directly by the RMFM. Hence, in the final subsection, the rela-
tionship between the Fick angles contained in the rotation matrix and the
measured RMFM angles is derived.

This section presents the heart of the data-processing method. It is the
one that requires the most mathematics. The reader unfamiliar with the
material on vectors and matrices in Appendix B is advised to review this
appendix now.

4.3.1 Specifying a Rotation

Three independent pieces of information are required to uniquely
specify a rotation of a vector or a system of coordinate axes. The
first of these is an axis of rotation, the second is the angle through
which the vector or coordinate system is rotated about that axis, and
third is the sense of the rotation.

An axis of rotation is simply a direction. Since vectors are quantities that
have both length and direction, an axis may be specified by giving a vector
that points along this axis and that has a length of one unit (i.e., a unit
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vector). Hence any unit vector uniquely defines an axis of rotation.

Specifying the sense of the rotation amounts to defining in which direction
around the axis of rotation the rotation angle increases (e.g. clockwise or
counterclockwise). It is customary to define the sense of rotation with the
terms ”left-handed” or "right-handed”. In a left-handed rotation one points
the thumb of the left hand along the rotation axis and the fingers of that
hand then curl naturally in the direction of increasing rotation angle. All of
the rotations described below will be left-handed.

4.3.2 Fick and Helmholtz Coordinate Systems

There are several different systems for describing the position (orientation)
of the eye in its orbit in common use in the eye-movement literature. Some
of these include the Helmholtz, Fick, and Listing systems[5]. Of these, the
most important one for the purposes of the derivation given below is the Fick
system. The Helmholtz system is important for the analysis of binocular
data, specifically for "vergence” eye movements. Therefore, both of these
systems will be briefly described below.

The reference for all of these systems is called the primary eye position.
The eye is in this position when the subject looks straight ahead and is
looking at a distant object. To define one of these systems, one imagines
a sphere centered on the eye and having lines of latitude (corresponding to
lines that measure angular distance north and south of the equator on the
earth) and longitude (measuring angular distances east and west of the prime
meridian) drawn on it. The lines of longitude all intersect at two points on
the sphere: the north and south poles. The line joining these two points
is called the pole axis. The eye position is specified by giving the angular
coordinates of the intersection of the line-of-sight of the eye with the sphere
and by giving the angle of rotation of the eye around this line-of-sight. The
systems differ in the orientation of this axis and in the orientation of the
sphere around this axis.

The Helmholtz System

In this system, the pole axis of the sphere passes through the center of both
eyes and the north pole is to the right of the subject’s head. The eye reaches
its final position by rotating through three angles, (H;, Hz, H3). Starting
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from the primary position, the eye first rotates about the pole axis through
the angle H;, called the first Helmholtz angle. During this rotation the eye
is looking upward (if H; is positive) and follows the equator of the sphere.
Next the eye follows the line of longitude to the right through an angle H,
whereupon it reaches the point of intersection of the line-of-sight with the
sphere. Finally it rotates around the line-of-sight through the angle H; (the
third Helmholtz angle). See fig. 4.5. The plane that contains the line-of-sight
and the pole axis is called the plane of regard and is important for studies
of, for example, ”vergence” eye movements.

The Fick System

In the Fick system, the pole axis is vertical and passes through one eye
of the subject and the north pole is above the head. To reach its final
orientation the eye first rotates about the pole axis through an angle F}
called the first Fick angle or the longitude angle. If this angle is positive
then the subject will be looking horizontally to the right during this rotation
that follows the equator of the sphere. Next the eye follows a line of latitude
(which eventually reaches the north pole above the head) until it reaches
the intersection of the line-of-sight with the sphere in the final orientation.
In this rotation, the eye moved through an angle F, called the second Fick
angle. These two angles are similar to the ”spherical polar coordinates”
in elementary mathematics and the Fick system is sometimes called polar
coordinates. Lastly, the eye rotates around the line-of-sight through an angle
F3 to reach its final orientation. See fig. 4.6. Note that in the descriptions of
both the Fick and Helmholtz coordinates, The order in which the rotations
are performed is specified. This is done because rotations do not commute.
In what follows, this process of performing given rotations in a specified order
will be referred to as a procedure (e.g. the Fick procedure).

Analogy of these Systems with the Eye-angles Measured by the
RMFM

The vertical eye-angle measured by the RMFM is the angle between the
projection of the unit vector perpendicular to the eye-coil onto the TCS xz-
plane and the TCS x-axis. The horizontal angle is the angle between the
projection of the unit vector perpendicular to the eye-coil onto the TCS xy-
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line-of-sight

Figure 4.5: The Helmholtz system
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F, line-of-sight

Figure 4.6: The Fick system
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plane and the TCS x-axis. The angles, respectively, are analogous to angles
in the Helmholtz and Fick systems described above. They are not the
same, however, because the Helmholtz and Fick systems are fixed
in the body of the subject and the RMFM coordinate system is
fixed in space. The horizontal and vertical angles are identical to those in
the Helmholtz and Fick systems for a subject whose head is immobilized such
that the line-of-sight of the eye looking at the primary position is parallel to
the TCS x-axis. This is not a disadvantage for the measurement of free-head
eye-movements, however.

With the above in mind, the relationship between RMFM angles and
those of the Helmholtz and Fick systems can be stated as follows. The
RMFM horizontal angle is the first Fick angle, (F}), and the vertical angle is
the first Helmholtz angle, (H,). It is very important to note that, given these
two angles, the direction of the eye’s line-of-sight is uniquely determined.
Thus the second Fick, (F3), and the second Helmholtz, (H;), angles can be
determined from F), and H,. The equation for F; in terms of Fy and H, are
derived below. '

Finding F, from F; and H,

Figure 4.7 shows an arbitrary point in space a distance r from the origin. The
direction from the origin to the point can be alternatively located by either
the two Helmholtz or the two Fick angles as shown. The rectangle parallel to
the yz-plane and whose upper right corner contains the point (z,,y,, z,) can
be considered the base of a four-sided pyramid whose apex is at the origin.
The four lines connecting the origin to the corners of this rectangle form four
different right triangles. Each one of these triangles contains one of the four
angles, Fy, F,, H,, and H,. Using these triangles, the coordinates (z,, y,, 2,)
can be expressed in terms of either both Helmholtz angles or both Fick angles
as labeled on the figure and given below.

x, = r cos(H) cos(Hz) = r cos(Fy) cos(Fz),
Yo = rsin(Hz) = rsin(Fy) cos(F3),
2, = rsin(Hy) cos(H3) = rsin(F3).

The second equality in each of these equations yields three equations that
may be solved for both F; and H; in terms of F; and H,;. These equations
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are

cos(H, ) cos(Hy) = cos(F) cos(F3), (4.41)
sin(Hz) = sin(F}) cos(F3), (4.42)
sin(Hy) cos(Ha) = sin(F3). (4.43)

To find F; in terms of F; and H, Eq. 4.42 is used to eliminate H,. By
using the identity, sin?(8) + cos%(8) = 1 one can find the expression for the
cos(H,):

cos(Hz) = (1 — sin2(F1)cos2(F2))%.
Inserting this into Eqs. 4.41 and 4.43 the following two equations are ob-

tained.
cos(Fy) cos(Fy) = cos(Hy)(1 - sin 2(F}) COSz(F2))%,

and
sin(Fy) = sin(H; )(1 — sin 2(F}) cos 2(Fy))?.

Taking the ratio of these two equations gives
tan(F,) = tan(H, ) cos(F}), (4.44)
and so finally
F, = tan ~!(tan(H,) cos(F})). (4.45)
Using again the relation, sin ?(#) + cos?(f) = 1, one can also derive the
equations for the sine and cosine of F3 in terms of F) and Hy:

tan(Hl)

Sin(Fz) = 1
(1 + tan2(Fy) + tan2(H,))?

, (4.46)

and

sec(F})

cos(Fy) = 7.
(1 + tan2(Fy) + tan 2(H,))?

(4.47)
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/_ r Sm(Hz) (xo,yo,zo)

/ r rsin(F,)
H,
r cos(Hz) sin(H 1) »
r cos(H,) —— H) F,
r cos(Fz)
r cos(H,) cos(H,) — F r cos(F,) cos(F,)

o .
r cos(Fz) sin(F l)

Figure 4.7: Converting between Fick and Helmholtz coordinates
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4.3.3 Derivation of the Single- Axis Rotation Matrices

This subsection contains two separate derivations of the full rotation matrix
for the head. The two approaches will be shown to produce identical rotation
matrices thus building confidence that the final matrix is the correct one. The
final matrix will depend on three angles, these angles are similar to those used
in the Fick procedure for specifying eye position (orientation). These angles
are different from the Fick angles in the sense that they are specified relative
to a coordinate system that is fixed in space rather than in the subject’s
head.

The two derivations of the full rotation matrix given below represent dif-
ferent approaches to the same problem. The first derivation employs the
rotation formula. One imagines rotating a position vector about some arbi-
trary axis through some arbitrary angle. Such an process, called an active
rotation, would produce a new position vector in the same coordinate sys-
tem. The rotation formula relates the coordinates of the new vector to the
coordinates of the original vector and to the given parameters of the rota-
tion. This formula is applied for each of the three Fick rotations and each
application of the formula produces a matrix for each rotation, the full head-
rotation matrix is obtained by multiplying the matrices for the individual
rotations together in the order specified by the Fick procedure. An advan-
tage of this approach is that the head-rotation matrix is found directly and
the matrix for each individual rotation represents an actual physical rotation
of the head. A disadvantage of this approach is that the axes about which
the second and third rotations are performed are not, in general, along the
axes of the coordinate system. This causes the final rotation matrix to be
quite complex. This complicated matrix may be simplified significantly, but
only after some tedious algebra.

The second approach is based on the idea of the passive rotation. In a
passive rotation, the coordinate system is rotated while the physical vector
remains the same. The major advantage of this method is that all rotations
are performed about coordinate axes. This results in matrices that have sim-
pler forms than in the previous derivation. One disadvantage of the method
is that the full head-rotation matrix is the inverse of the passive transforma-
tion matrix. This is a very minor disadvantage, however, because the inverse
of any rotation matrix is simply its transpose.

Both derivations are based on following idea. Whatever rotations
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must be performed on the head-coils to take them from their ori-
entation in the standard configuration to their orientation in the
arbitrary configuration must also be performed on the vector z.
to rotate it into the vector z.. The rotations that must be performed in
order to rotate the head-coils to an arbitrary orientation have been described
just above: it is just the three rotations that comprise the Fick procedure.
Hence the same rotations must be performed on the vector x.0. This is the
case for both derivations.

As described above, to specify each rotation requires the specification of
the unit vector that defines the axis of rotation of the vector x.o, the angle
through which x. is rotated, and the sense of the rotation. The sense of
all rotations described below will be left-handed.

Derivation of the Rotation Matrix Based on the Active Transfor-
mation

In this derivation, once the above information is given for all three rotations,
the determination of the corresponding rotation matrix is based on the rota-
tion formula. This formula, known since the eighteenth century, is derived
in Appendix C and gives the actual elements of the matrix that rotates a
vector in the left-handed sense through an angle 6 about an axis defined by
the unit vector n. These three rotations will now be described.

The first rotation is performed about the TCS z-axis through the angle F;
(the horizontal head-angle). The second rotation is performed about the axis
defined by the unit vector perpendicular to the smaller head-coil through the
angle F,. Finally, the third rotation is performed about the "line-of-sight”
of the head through the angle Fj.

The unit vectors associated with these rotations must all be expressed in
the TCS. They are, for rotation 1:

n; =k, (4.48)
along the TCS z-axis and the angle of rotation is F;. For rotation 2:
fiz = sin(Fy)i — cos(Fy)j, (4.49)

along the unit vector perpendicular to the smaller head-coil after the first
rotation. The angle of rotation here is F;. For rotation 3:

fi3 = cos(Fy) cos(Fy)i + sin(Fy) cos(Fy)j + sin(Fy)k, (4.50)
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along the "line-of-sight” of the head in its final orientation or equivalently,
along the unit vector perpendicular to the large head-coil when the head is
in its final orientation. The rotation angle for rotation 3 is Fj.

A 3 x3 rotation matrix is associated with each of these rotations. The first
rotation transforms the components of the vector xe¢ into the components
of the new vector (x}q) formed by rotating xep. This is done by multiplying
the rotation matrix corresponding to the rotation by a three-component col-
umn vector whose elements are the components of xeg. This is expressed in

equation form as follows
X;O = Rl(Fl)Xe(].

where R;(F1) is the matrix representing rotation 1. The new vector xj is
itself rotated in rotation 2 and this is performed mathematically in the same
way to get a still newer vector x7,. In equation form

Xeo = R2(F1, Fa)Xgq = Ra(F, F2) Ry (F1)Xeo.

Finally, the third rotation is performed on this newer vector and the result
is the vector Xe, the vector from head-sparker to eye when the head is in the
final, arbitrary orientation

Xe = Rz(Fth,Fs)Xgo = Rs(Fl,Fz,Fs)R2(F1,F2)Rl(F1)Xe0-

As a point of notation, the Fick angles in above parentheses indicate the func-
tional dependence of the various rotation matrices. Thus one can condense
the above equations into the following two equations

Xe = R(Fl,FQ,F;;)Xeo, (451)
where R(Fy, Fy, F3) is the total rotation matrix and is given by
R(F], Fg, F3) = R3(F1, Fz, F3)R2(F1, Fz)Rl(Fl) (452)

Expressions for the individual rotation matrices will be derived below.

As developed in Appendix C, the rotation formula gives the components
of a vector that has been rotated in the left-handed sense through an angle
¢ about an axis defined by the unit vector fi. This formula is as follows

r' =rcos(@) + A(f - r)(1 = cos(¢)) + (r x fi)sin(P), (4.53)
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where r’ and r are the rotated and original vectors respectively. The ele-
ments of the rotation matrix defined by this transformation are obtained by
comparing the above equation written out in terms of components with the
following equations that correspond to a rotation

.'III = R]]IL‘ + R]gy + ngz, (454)
¥' = Rnz + Ryy + Raaz, (4.55)
Z’ = R31.13 + R32y + R33Z. (456)

These equations are summarized in matrix form as follows

z’ Ry Ry Ris z
y | =| Ba Ry Ry vy |, (4.57)
2! Rs1 R3z Rass z

that is, the coefficients of the transformation equations form the elements of
the rotation matrix.
One can write Eq. 4.53 out in terms of components by letting

r = zi+ yj)+ 2k,
r' =21+ y'y+ 'k,

and
n = n,1+ n,j + n,k,

inserting these into the equation and equating coefficients of the unit vectors
1, J, k. The rotation formula equations, after putting sin ¢ = s4 and cos ¢ =
¢4, then become

z’ = (cg + (1 — co))a + (nany (1 — ¢s) = n286)y + (nenz(1 — cg) + nys0)2,

y' = (nyng(1 = c4) + n28g)x + (¢ + n2(1 = c4))y + (nyn2(1 — cg) = n284)z,
2= (nang(l = cg) — ny8e) + (nany(1 = ¢5) + nase)y + (cp +n5(1 = c4))z.

The particular values of the rotation matrix elements are found by specifying
the expressions for the parameters n,, n,, n,, and ¢ and are given below for
each rotation.
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The Matrix for Rotation 1 For rotation 1 the values of the needed
parameters are

ng=n,=0n,=1,¢=F.
inserting these into the above equations and reading the coeflicients gives the
following matrix for rotation 1 :

cos(Fy) —sin(Fy) 0
Ri(Fy) = | sin(F)) cos(Fy) 0 |. (4.58)
0 0 1

The Matrix for Rotation 2 In this rotation the parameters are

ng = sin(F),
ny, = — cos(Fy),

n, = 0,
and

¢ = Fz.
Hence the matrix for this rotation is

2+, —sie(l —c)) —asy
Ry(F,F) = | —sia(l —¢) et + sie, -s182 |, (4.59)
C182 8182 . &)

where, for brevity, the notation s; = sin(F;) and ¢; = cos(F;) has been

introduced and where 2 = 1,2, 3.

The Matrix for Rotation 3 The matrix for the last rotation is the most
complicated, the parameters for this matrix are

ngy = — cos Fy cos Fy,
ny = —sin Fj cos Fy,
n, = —sin Fj,
and
¢= F3.
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And the elements of the matrix for this rotation are

r11 = cos F3 + (cos F} cos F3)?(1 — cos F3), (4.60)
r12 = sin F cos Fy cos 2 Fy(1 — cos F3) + sin F;sin Fj, (4.61)
r13 = cos F} cos F, sin F5(1 — cos F3) — sin F} cos F; sin F3, (4.62)
r91 = sin Fj cos F} cos 2F2(1 — cos F3) — sin F, sin Fj, (4.63)
r92 = cos F3 + (sin F} cos F3)?(1 — cos F3), (4.64)
o3 = sin Fy cos F sin F3(1 — cos F3) + cos Fy cos F; sin F3, (4.65)
r31 = cos Fy cos Fy sin F3(1 — cos F3) + sin Fj cos F; sin F3, (4.66)
r32 = sin F sin F), cos F,(1 — cos F3) — cos Fj cos F; sin Fj, (4.67)
733 = cos F3 + (sin F3)?(1 — cos F3). (4.68)
The third matrix is then formed as follows

i1 Tz T3
Ry(Fy, Fy, F3) = ( T21 T22 T23 ) . (4.69)

731 T32 T33

The Final Matrix The full head-rotation matrix is obtained by multiply-
ing the above three matrices together as given by Eq. 4.52. As is evident
from the forms of these matrices, their product will be a bewilderingly com-
plicated matrix. Through the use of various trigonometric identities, the
final product matrix can be significantly simplified. The steps of this simpli-
fication will not be given here. The form of the full head-rotation matrix is
given below.

Ci1C2 —S81C3 + c18283 —8183 — C182C3
R(Fl, Fg, F3) = 81C2 CiC3 + 818283 C183 — 8189C3 (470)
S2 —C283 C2C3

where, again, s; = sin F; and ¢; = cos F; and ¢ = 1,2, 3.
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Derivation of the Rotation Matrix Based on the Passive Transfor-
mation

In an active rotation, a new vector is obtained by physical rotation of the
vector in a fixed coordinate system. The components of the new vector are
expressed in terms of the components of the old vector and the parameters
of the rotation. The mathematical equations for each type of rotation can
be summarized by a rotation matrix. For experiments performed with the
RFM, it is clear that the active-rotation matrix is required because the eye-
to-head-sparker vector undergoes a rotation whenever the subject moves his
head. It is necessary to find the new components of this vector in the TCS.
In a passive rotation of a vector, the components of a fixed vector
are changed by rotation of the coordinate system. The mathematical
equations that represent this rotation express the components of the vector
relative to the new coordinate system in terms of the components of the
vector relative to the old coordinate system and in terms of the parameters
of the rotation.

Fig. 4.8 illustrates the difference between these two types of transforma-
tions for a two dimensional vector. The active-rotation matrix is equal to the
inverse of the passive-rotation matrix. This fact forms the basis for the sec-
ond derivation given below: one first finds the passive-rotation matrix for the
head and then finds the inverse of this matrix to obtain the active rotation-
matrix. The inverse is easily found because, for all rotation matrices, the
inverse is equal to its transpose.

The coordinate system being rotated here is the TCS. One imagines the
three mutually perpendicular coordinate axes of the TCS to be a set of
rigid rods. After rotation, this set of rods forms the coordinate axes of a
new coordinate system, hence a new coordinate system is created by the
rotation. Each succeeding rotation is performed relative to the coordinate
system created by the previous rotation. Thus all rotations are performed
about axes parallel to a coordinate axis in the newly created coordinate
systems.

The rotations comprising the Fick procedure are as follows: (1) A rota-
tion of the TCS coordinate axes about the positive TCS z-axis through the
angle Fy. The new coordinate system created will be called the ”primed”
coordinate system. The next rotation is (2) a rotation about the negative y-
axis of the primed coordinate system (creating the "double primed” system)
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Active Rotation of a Vector

Passive Rotation of a Vector

Figure 4.8: Active and passive rotations

60



through the angle F;. Finally (3) a rotation is performed about the negative
x-axis of the "double primed” coordinate sytem through the angle Fj. This
rotation creates the final coordinate system which will be called the "triple
primed” system. Figure 4.9 illustrates these rotations.

This process is represented mathematically by associating a matrix with
each of the three rotations. Let x be an arbitrary vector whose coordinates
(z,y, z) are given relative to the TCS. Then, if rotation (1) (described above)
is performed on the TCS, denote by (x)’ the same vector except that its
coordinates (z’,y’, 2') are given relative to the "primed” system. Further let
(x)” be again the same vector except that its coordinates are given relative
to the "double primed” system. Finally, let (x)” be the same vector whose
components are given relative to the "triple primed” system.

The components of (x) are related to those of (x) via the matrix (71(F}))
that represents rotation (1):

(x) = Ty(F)(x). (4.71)

The components of (x)” are related to those of (x)’ via the matrix represent-
ing rotation (2):
(x)" = To(Fy)(x)". (4.72)

And finally the components of (x)"” are related to those of (x)” via the matrix
representing rotation (3):
(X)I” = T3(F3)(X)”. (473)

Gathering these three equations together one can relate the components of
(x)" to those of (x) as follows

(x)" = [T3(F3)T2(F2)Th(F1)] (%) (4.74)

The expression in square brackets is a product of three (3 x 3) matrices and
is itself a (3 x 3) rotation matrix. The inverse of this matrix is the full head-
rotation matrix already derived by the active rotation method and expressed

in Eq. 4.70
R(Fy, Fy, F3) = [T5(F3)To( F2)Ty(F)] ™

and since the inverse of any rotation matrix is simply its transpose, the
following relation holds

R(Fy, Fp, F3) = [Ts(Fs)To(Fy)Ty(Fy))" . (4.75)

The individual passive rotation matrices are derived below.
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The Three Passive
Fick Rotations

z7 z

Rotation 1 Rotation 2

F3

xx'

Rotation 3

Figure 4.9: The three passive Fick rotations
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Determining the Passive Rotation Matrices Ty, T3, and 73 The prob-
lem of determining the elements of the three passive rotation matrices defined
above is equivalent to the problem of finding the relationship between the
components of the same vector as expressed in two different coordinate sys-
tems. How this relationship is obtained will be illustrated for the case of the
passive rotation matrix 7.

Let (x) be an arbitrary vector whose components are given in the TCS.
Let these components be denoted by (z,y,2). Also, let 1,j, and k be unit
vectors along the TCS x-, y-, and z-axes respectively. Then (x) may be
written as

(x) =zi+yj + zk. (4.76)

If (x)’ is the same vector in the ”primed” system with components (2, y’, 2'),
and if i',j’, and k' are the unit vectors along the x-primed-, y-primed-, and
z-primed-axes respectively, then

(x) =2V +yj + K. (4.77)
But (x)’ and (x) are the same vector, hence
zi+ yj + zk =2V + v'j’ + 2'k’. (4.78)

Taking the dot product of both sides of the above equation with the unit
vector i/, and noting that the unit vectors i’,j’, and k’ are mutually perpen-
dicular so that i-i=1,j-) =0, and k -k = 0, one obtains

o' =2(i- 1) +yG- i)+ 2(k - 7). (4.79)

Taking the dot product of both sides of Eq. 4.78 with j’ and k' gives the
following equations

y' =2(-§)+y(-J) +2(k-§), (4.80)

and

Z=z(-K)+y(-k')+z(k-k'). (4.81)

The above three equations relate the components of the vector in the TCS
to the components of the same vector in the primed system. The quantities
in parenthesis (e.g. (i-j’) ) are the dot products of the unit vectors in the
TCS with those in the primed system. Since all of these vectors have unit
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length, it follows directly from the definition of the dot product that the
parenthetical quantities represent the cosines of the angles between all pairs
of coordinate axes with one axis of the pair coming from the TCS and the
other from the primed system. For example, the quantity (i - j’) is the cosine
of the angle between the x-axis of the TCS and the y-axis of the primed
system. Such quantities are called direction cosines.

Using Eqs. 4.79, 4.80, and 4.81, it is simple to write down the form for
the passive rotation matrix T; as follows

g kv
=iy jj k| (4.82)
ik j-kK kK

To find the actual values of the elements of this matrix for passive rotation
(1) of the Fick procedure (see fig. 4.9) consider first the x-primed-axis in
relation to the x-, y-, and z-axes of the TCS. The angle between the x-
primed-axis and the TCS x-axis is F}, the angle between the x-primed-axis
and the TCS y-axis is 90° — Fy, and the angle between the x-primed-axis and
the TCS z-axis is 90°. These cosines form the top row of the above matrix
and recalling that cos(90° — 8) = sin(6), and that cos(90°) = 0, the elements
in the top row are: cos(Fy), sin(Fy), and 0.

Now consider the y-primed-axis. This axis forms angles of 90° + Fi, Fy,
and 90° with the TCS x-, y-, and z-axes respectively. Thus the elements of
the second row are — sin(F}), cos(F}), and 0.

For the z-primed-axis, the angles are 90°, 90°, and 0° for the TCS x-, y-,
and z-axes respectively. And the third row of elements are 0, 0, and 1. The
final form of the above matrix is therefore

cos(Fy) sin(Fy) 0
Ti(Fi) = | —sin(F1) cos(F1) 0 |.
0 0 1

(4.83)

In exactly the same way (see fig. 4.9) one can form the other two matrices
T,, and T3. These matrices are as follows

( cos(F;) 0 sin(Fy) )
TZ(F2) = 0 1 0 )
—sin(Fz) 0 cos(F?)

(4.84)
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An Example of Direction

Cosine Angles
Z

y

Figure 4.10: The angles the x’-axis makes with x-, y-, and z-axes
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and

1 0 0
T3(F3) = | 0 cos(F3) —sin(F3) |. (4.85)
0 sin(F3) cos(F5)

By inserting the above three matrices into Eq. 4.75, one obtains the
following final head-rotation matrix

C1C; —81C3 + C18283 —8183 — C182C3
R(Fl, Fz, F3) = S1C2 Cci1C3 + 818283 C183 — 8182C3 (486)
S2 —C283 C2C3

where s; = sin(F}) and ¢; = cos(F;) and 7 = 1,2,3. Note that this matrix is
identical to that derived by the active rotation method in Eq. 4.70.

The above matrix has the following physical interpretation: It is the
matrix that represents the performance of the Fick rotation procedure on
the vector from the head-sparker to the sighting-center. This matrix will
never change under any circumstances. Even if a piece of equipment
such as the head-coil apparatus is replaced, this matrix will not be affected.
The reason for this is that not all of the Fick angles are directly measured by
the RMFM. One must find the connection between the Fick angles contained
in Eq. 4.86 and the angles actually measured by the RMFM. If the head-
coil apparatus is changed, these connections will change but not the matrix.
This approach will minimize changes in computer programs that are based
on this matrix. The rest of this section is devoted to the derivation of this
connection.

Derivation of the Equations Connecting (F}, F;, F3) and (65,0, 0,)

The derivation of the link between the Fick angles and the angles measured
by the RMFM will be based directly on the definitions of the measured angles
given in Chapter 2 and on the matrix given in Eq. 4.86. The basic procedure
will be to mathematically define the form of the unit vectors normal to the
head-coils in the standard head-configuration and then to perform the Fick
rotation procedure on these unit vectors and finally to apply the definitions
of the horizontal, vertical, and torsional angles to the rotated unit vectors.
One extra complication is introduced because the smaller head-coil is not
precisely perpendicular to the large head-coil. The angle of departure from
perpendicularity will be introduced as a parameter in the derivation of the
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connection between the Fick angles and the measured angles. The method by
which this angle was determined will be described in a subsequent paragraph.

The Head-Coil Unit Vectors in the Standard Head-Configuration
Figure 4.3 shows a picture of the unit vectors normal to the large and smaller
head-coils when the head-coil apparatus has the standard orientation. One
can see from the figure that the unit vector normal to the large head-coil is
exactly parallel to the TCS x-axis and that the other unit vector lies in a
plane parallel to the TCS xy-plane but that it is not exactly perpendicular
to the large-coil unit vector. The angle of departure from perpendicularity
will be denoted by the symbol 8. It is simple, therefore, to write down the
components of these two unit vectors for this case.
The large-head-coil unit vector in this case (see fig. 4.3) is

1
ny = 0 y (4.87)
0

and the smaller-head-coil unit vector has the form

sin(4)
ng = | —cos(f) |. (4.88)
0

If an arbitrary rotation of the head-coil apparatus is performed, whose Fick
angles are (Fy, F3, F3), then these two unit vectors can be obtained by ap-
plying the Fick rotation matrix given in Eq. 4.86:

n’L = R(Fl’FQ’FL’»)nL, (489)

and
ﬂls = R(F],Fg,Fe,)ns. (490)

Performing the matrix multiplication gives the following two column vectors
for the unit vectors in the arbitrary configuration

C1C2
n'L = S81C2 y (491)
S2
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and
c1¢285 + (s1€3 — €18283)¢cp
l'lls = $1C283 — (0163 + 313283)Cﬁ . (492)
S283 + C283C3
where, for brevity, the following notation has been used: ¢; = cos(F;), s; =
sin(F;), sg = sin(f), and ¢g = cos(f), and where i = 1,2,3.

The Link Between (F}, Fy, F3) and (6y,0,,0:) The next step will be to
use the components of these unit vectors in the arbitrary head-configuration
to form the expressions for the sines and cosines of the Fick angles in terms
of the measured head-angles according to the definitions of the head-angles
given in Chapter 2. This will be done for each of the Fick angles in turn.

The Link Between F; and the Measured Head-Angles From fig.
2.6 in Chapter 2, one can see that the horizontal head-angle is the angle
between the projection of the unit normal vector to the large head-coil onto
the TCS xy-plane and the TCS x-axis. Eq. 4.91, above, gives the components
of this unit vector in terms of the three Fick angles. The vector that is the
projection of ny onto the TCS xy-plane has the same components as nf,
except that its z-components is zero and therefore has the following form

C1C2
nfy, projected onto the TCS xy-plane = nppy, = | sic2 | . (4.93)
0

The connection to the horizontal head-angle can be made by noting that a
right-triangle is formed by the x- and y-components of this projected vector
with the hypotenuse of the triangle being formed by the projected vector
itself. The angle between the projected vector and its TCS x-component
is just the horizontal head-angle 6,. Thus the tangent of the horizontal
head-angle is the ratio of the y-component of the projected vector to the
x-component of the projected vector

nl
( I;ny)y = 512 _ 51 tan(Fy). (4.94)
(nLny)I ez !

It follows from the above equation that the horizontal head-angle is identical
to the first Fick angle (F}) contained in Eq. 4.86. That is

Fy = 6, so s; =sin(Fy) = sin(6,), and ¢; = cos(Fy) = cos(6r).  (4.95)

tan(6,) =
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This connection was already mentioned in the discussion of the Fick and
Helmholtz systems in section 4.3.

The Link Between F, and the Measured Head-Angles To find
the vertical head-angle, the unit vector nj is projected onto the TCS xz-
plane. This is done by setting the y-component equal to zero

. C1C9
ny, projected onto the TCS xz-plane = nipy, = ( 0 ) . (4.96)
82

And a right-triangle similar to that for the horizontal head-angle can be con-
structed (see fig. 2.5) such that the tangent of 6, is equal to the ratio of the
TCS z-component to the TCS x-component of the vector nj p,,. Mathemat-
ically this is expressed as follows

tan(ov) _ (nILsz)Z _ Sz _ tan(F2) (497)

- (NLpyg)c  CiC2 "~ cos(Fy)’

This equation can be used to solve for the sine and cosine of F; in terms of
0, and 6,. This is needed for the Fick rotation matrix given in Eq. 4.86.
Noting that F; = 6, the above equation may be rewritten as

tan(F;) = cos(6)) tan(6, ). (4.98)

and using the definition of the tangent in terms of sine and cosine the above
becomes

sin(Fy) = (cos(6;) tan(8,)) cos(Fz). (4.99)
Now using sin 2(F;) + cos2(F3) = 1 and Eq. 4.99 one can solve for the sine
and cosine of F; in terms of 8, and 6, only. The results are
cos(6) tan(6,)
(1 4 cos2(6) tan 2(9,))?

Sy = Sin(Fz) = y (4100)

and )
= F) = . 4.101
¢ = cos(F3) (1 + cos?(6y) tan 2(91;))% ( )

These equations are part of the critical link between measured data and the
matrix in Eq. 4.86. Note that F, depends on both 8, and 4,.
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The Link Between F3 and the Measured Head-Angles The tor-
sional angle is the angle between the unit vector ng projected onto the TCS
yz-plane and the negative TCS y-axis. The vector formed by projecting ng
onto the TCS yz-plane is obtained by setting its x-component equal to zero

0
ng projected onto the TCS yz-plane = n’spyz = | s1c285 — (c1¢3 + $18283)¢s
8283 + €283C3
(4.102)
As above, a right-triangle can be constructed such that one of the angles is
the torsional head-angle. The tangent of this angle is the negative of the
ratio of the z-component of ngp,, to the y-component of ngp,,

(nspyz): $285 + C283¢p (4.103)

tan(6;) = t, = — = .
(0:) = t (ngpy,)y s1¢288 — (c1¢3 + $18283)¢p

The equation can be rewritten as

241
= satplts+1) + eats (4.104)

t _3162tﬁ(t:23 + 1) —_ (Cl + 8132t3),

where tg = tan(f).
The procedure for finding the sine and cosine of Fj in terms of measured
angles is similar to that for the vertical angle. Eq. 4.104 contains factors
such as s;,c¢;, 82, and ¢,, all of which have already been found in terms of
measured angles so these factors can be taken as known. Also, the of the
angle 8 are known (its determination will be described below) and since 0, is
measured, tan(é,) is also known. Thus Eq. 4.104 yields a quadratic equation
for t3 = tan(F3) that can be solved entirely in terms of measured angles. The
result is
—ab— cla? 4+ b2 — ]2

, (4.105)

ts =

where the second minus sign in the numerator indicates that the negative
root of the quadratic equation has been used. This is due to the fact that
when the torsion angle is zero, the third Fick angle (F3) must be negative.
The factors a, b, and c are given by

a = 8155t — ¢3, (4.106)
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b= cit,, (4.107)
¢ = (83 + s1c2t) % g, - (4.108)

Then Eq. 4.105 can be used along with the identity sin ?(F3) + cos 2(F3) = 1
to find s3 and ¢3 in terms of measured angles. The results are

t3

S3 = ———o 4.109
=T (4.109)
and )
(1+13)}

These equations give s3 and c3 entirely in terms of measured angles because
t3 is expressed this way via Eqgs. 4.105 - 4.108.

Determination of the Non-Orthogonality Angle 7 The angle 3 was
determined by making simultaneous measurements of the horizontal and ver-
tical angles of the large head-coil and the torsional and horizontal angles of
the smaller head-coil. Since the measurement of the first three of these angles
serves to uniquely determine the orientation of the head-coil apparatus, the
measurement of the horizontal angle of the smaller head-coil constitutes an
independent measurement of the non-orthogonality angle £.

The horizontal angle for the smaller head-coil is defined in exactly the
same way as for the large head-coil. The expression for the tangent of this
measured angle in terms of the Fick angles and the non-orthogonality angle
is
s16atg — (c1¢3 + 518283)
CICth + (3163 - 013283) '
From the measurements of 8, and 6, the quantities s, ¢;, sz, and ¢; can be
determined. Using these and the measurements of 6, and 8;, in Eqs. 4.104
and 4.111 along with the identity sin 2(F3) + cos 2(F3) = 1 yields a system of
three equations for the three unknowns: sz, c3, and t3. Recall that s3 and c3
cannot be determined unless the angle 3 is known.

The experimental procedure for determining the non-orthogonality angle
was as follows. The head-coil apparatus was mounted on a fixed object and
the four angles described above were measured by the RMFM in five trials
with each trial having a duration of 2 seconds. Some care was observed to

tan(f0y,) =ty = (4.111)
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mount the apparatus in an orientation similar to its orientation when worn by
a subject and such that 6, and 6, were nearly zero (i.e. raw angle readings
of 13,500 and 8,100 minarc respectively). A direct measurement, without
the need for calculation, would have been possible if the apparatus had been
mounted such that 6, 6,, and 8, were all zero. This would have placed
an undue burden on the experimenter to orient the head-coil apparatus so
exactly. Also, given the above algorithm for determining the angle 3, the
apparatus could have been placed in any orientation.

The angle readings were averaged over each trial and standard deviations
of the data were computed. The trial whose data was selected for use in the
equations for determining the non-orthogonality angle were those in which
the standard deviations were the smallest. The final data were as follows
(angle units in minarc): 8, = 13548.69—13500, 4, = 8178.77, 6,, = 8113.92—
8100, and 6, = 7482.92—8100. The final value for the non-orthogonality angle
was

B = 0.80517° = 48.487 minarc. (4.112)

Thus the two coils in the head-coil apparatus were mounted perpendic-
ularly to within ldegree of arc. This is remarkable since no special care
was taken to make them perpendicular at the time the apparatus was con-
structed.
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Chapter 5

Summary of the Data
Processing Method

In this chapter the entire algorithm will be summarized in a way suitable for
encoding in a computer program. The presentation is organized into three
parts (1) Inputs, (2) Outputs, and (3) Processing. The algorithm presented
refers to one eye only.

5.1 Inputs

The required inputs are as follows.

1. TCS coordinates of target - ry, = (Ttar1,Ttar2, Ttars) are the TCS
coordinates of the target, measured in millimeters.

2. TCS coordinates of eye while subject is on the biteboard -
Teb = (Zeb, Yebs2eb) are the TCS coordinates of the sighting-center of subject
while on biteboard, measured in millimeters.

3. Head-Sparker data from mirror-trial - d,,;, dyoi, deoi, daoi , the dis-
tances from sparker to microphone in sparker units where i = 1, ..., Ny, and
N5, is the number of sparker strobes in the mirror trial for the appropriate
eye. The a, b, ¢,d subscripts denote the particular microphone.

4. Head-Coil data from mirror-trial - hdh,;, hdv,j,toz,;, the hori-
zontal, vertical, and torsional angles measured during the mirror trial for the
appropriate eye, measured in minarc. The index 7 run from 1 to N, the
number of RFM bursts during the trial.

5. Eye-Coil data from mirror-trial - (Ish.;,lsv,;), or (rsh,,,rsv,;)
are the horizontal and vertical eye-coil readings for the left or right eye re-
spectively taken from the appropriate mirror trial and measured in minarc.
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The subscript j runs over the same range as in 4.

6. Trial number - n, number of the trial to be processed.

7. Head-Sparker data from trial n - dan;, doni, deni, dani, the same data
as in 3 but for trial n. The subscript ¢ runs from 1 to N,,,, the number of
sparker strobes during trial n. '

8. Head-Coil data from trial n - hdh,;, hdv,;,toz,;, the same data as
in 4 but for trial n. The subscript j runs from 1 to N4, the number of RFM
bursts during trial n.

9. Eye-Coil data from trial n - (Ishyj,lsv,;), or (rshyj,78v,;) are the
same data as in 5 but for trial n. The subscript j runs over the same range
as in 9.

10. Instrument characteristic quantities - distances between micro-

phones
mdab = 1762 mm,

mdbc = 1760 mm,
mded = 1763 mm,

mdda = 1764 mm,

mdbd 2490 mm,
mdac 2494, 392107 mm,
Scale factors for each microphone

o

8, = 0.097302 mm/sparker unit,

sy = 0.097187 mm/sparker unit,
sc = 0.097731 mm/sparker unit,
sq4 = 0.096076 mm/sparker unit.

The SCS to TCS transformation matrix A, given in Appendix A. The ele-
ments in the 3 x 3 submatrix are dimensionless and element in the fourth
column are measured in mm. Reference angles: horizontal reference angle

href = 13500 minarc,

vertical reference angle
vref = 8100 minarc,
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and torsional reference angle
tref = 8100 minarc.
And finally, the non-orthogonality angle
B = 0.80517° = 48.487 minarc.

5.2 Outputs

The quantities to be computed and output are horizontal and vertical gaze
errors and table gaze positions at each RFM burst of trial n. The horizontal
and vertical gaze errors are the differences between the horizontal and vertical
gaze angles (as determined from eye-coil data) and the horizontal and vertical
gaze angles as determined by a straight line from sighting-center to target.
The table gaze position is the TCS x- and y-coordinates of the intersection of
the subject’s line-of-sight with a plane that is parallel to the table xy-plane
and contains the target point.

1. Horizontal gaze errors - geh;, the horizontal gaze error with respect
to the target at the j* RFM burst of trial n. The subscript j runs from 1
to Nesn.

2. Vertical gaze errors - gev;, the vertical gaze error with respect to
the target at the j** RFM burst of trial n.

3. Table gaze position x-coordinate - gpz;, the TCS x-coordinate of
the table gaze position at the j** RFM burst.

4. Tabie gaze position y-coordinate - gpy;, the TCS y-coordinate of
the table gaze position at the j* RFM burst.

5. sighting-center - r.; = (&, Yej, 2¢j), the TCS coordinates of the
sighting-center of the subject at the j** RFM burst of trial n.

Other quantities can also be computed once the sighting-center is calcu-
lated. The equations for horizontal and vertical gaze errors and for table
gaze positions presented later in this chapter are derived in Appendix A.

5.3 Processing

The major steps that must be performed to compute the outputs given the
inputs are described below.
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5.3.1 Compute mirror-trial averages and initial head-
sparker position

Compute average mirror-trial sparker readings

Compute average sparker readings for the mirror-trial as follows for each
microphone. For microphone A,

NSSO
daoe = E daou (51)
sso i=1
for microphone B,
1 N.sao
dboa = N”o g: dbon (52)
for microphone C,
1 N.s.so
coa = Z dcon (53)
and for microphone D,
NS’O
d oa = d o1« 5.4
d NSSO IZI d ( )

All of these quantities are measured in sparker units.

Compute average residual eye-coil angles

Compute mirror-trial averages for the horizontal and vertical eye-angles in
the mirror-trial. This must be done for the appropriate eye.
Left-eye horizontal angle average

NC.!O

Isho, = Z Ish,;, (5.5)
CSO ] =1
left-eye vertical angle average
NC.!O
lsv,, = E lsv,;, (5.6)
cso ]"1
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right-eye horizontal average

NCSO
r8hoe = Z rshoj, (5.7)
cso ] =1
right-eye vertical average
1 Ncao
TSVoq = TSV,j (5.8)
Neso j=1

Compute average initial head-coil angles

Compute the average horizontal, vertical, and torsional head coil readings
for the mirror-trial as follows.
Horizontal angle average

Neso
hdh,, = > hdh,;, (5.9)
CSO ] 1
vertical angle average
NC &0
hdv,, = Z hdv,;, (5.10)
cao j=1
and torsional angle average
NCSO
102, = Z toz,;. (5.11)
NCSO ]—

Compute head-sparker position with subject on the biteboard

Compute head-sparker position in the SCS

Convert average sparker readings to millimeter units To perform
the conversion, multiply the raw readings by the appropriate scale factor.
Microphone C is not used here because it sometimes proved unreliable.

For microphones A, B, and D respectively

Taoa = Sadaoay (512)
Tboa = sbdboa, (513)
Tdoa = sdddoa' (514)
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Get the SCS coordinates Since mdbd has now been measured, the
assumption that the frame on which the microphones are mounted is exactly
rectangular need not be made. Thus compute the SCS coordinates of the
head-sparker using the following equations.

First compute, once and for all, the coordinates of microphone B in the
STS xy-plane.

(mdda)? + (mdab)? — (mdbd)?

2 - mdda (5.15)

Irp =
and
ys = ((mdab)? — 23)7. (5.16)

Using these equations and setting zp = mdda, the STS coordinates of the
sparker are found as follows:
SCS x-coordinate:

2 2 2
) +r — Tdoa

s0 = aoa , 5.17
2 2m (5.17)

SCS y-coordinate:

x? + 3— (28 CL‘2 +r20a—r20a +r20a _rzoa
Voo = BT YB (ID)( D - doa) b ’ (5.18)
"YB

SCS z-coordinate:

Zs0 = (rZoa - ‘1"30 - yzo)%' (519)

Get the TCS coordinates Compute the TCS coordinates of the head-
sparker on biteboard from the SCS coordinates by first forming the four
component column vector

J:SO
_ Yso
o= 0| (5.20)
1
and left multiplying it by the transformation matrix A given in Appendix A.
Fpp = Arso. ‘ (521)

Where
Thp
Tpy = ( Yhb ) . (5.22)
Zhb
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5.3.2 Compute the Vector from Head-Sparker to Eye
with the Head in the Standard Configuration

Compute the vector from head-sparker to eye when the subject is
on the biteboard

Compute the components of this vector as follows

zeby = Tep — Thy, (5.23)
xeb2 = Yeb — Yhbs (524)
.’Eebg = Zep — Zhb- (525)

Compute the transpose of the rotation matrix from the standard
orientation to the biteboard orientation

Compute the rotation matrix from the standard orientation to the
biteboard orientation Using the horizontal, vertical, and torsional head
angle averages converted to radians as follows

T

hdv0a = hdv,, - (60 ‘ 180), (5.26)
T
= oa ‘\ 725 1on/? 2
hdh0a = hdh (60-180) (5.27)
v
toz0a = 1oz, - (60 ‘ 180), (5.28)

compute the 3 x 3 rotation matrix (denoted by R(hdv0a,hdhOa,t0z0a)) by
the method described in Chapter 4.

Compute the transpose of this matrix Compute the transpose as fol-
lows

|R” (hdvOa, hdhOa, t0z0a)| = = [R(hdv0a, hdhOa,t0z0a));; (5.29)

tj
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Get the components of the vector from the head-sparker to the eye
with the head in the standard configuration

Compute the components of this vector by left-multiplying the vector from
head-sparker to eye with the subject on the biteboard (xeb) with the above
matrix

3
zel; = Y [T (hdvla, hdhOa,tona)]ij zeb;. (5.30)

J=1

5.3.3 Compute Sighting-centers, Gaze Errors, and Ta-
ble Gaze Positions at each RFM burst of Trial
n

Compute the current sighting-center (sparker strobe i of trial n)

Compute the head-sparker position at sparker strobe : of trial n
Calculate the vector from the TCS origin to the current head-sparker position
by using Eqs. 5.12 to 5.22 starting with d,n;, dpni, and dgn,; instead of dyoq,
dboa, and dg,e. The TCS x-, y-, and z-coordinates of the final vector are
denoted by rhy;, rhy;, and rha; respectively.

It is very important to note that the ¢ subscript here is the index of the
sparker strobe. These strobes are synchronized with RFM bursts but occur
only once every eight bursts (RFM burst occur 488 times per second and
sparker strobes only 61 times per second). Thus, for now, one must include
an eight-fold repetition of the above vector to provide a sparker position
at each RFM burst. Some sort of interpolation must done to improve this
however.

Compute the rotation matrix at RFM burst j of trial n Calculate
this matrix by first converting the measured head angles to radians

T

hdvn]- = hdvn]’ . (m), (531)
T
T

toznj = tozy; - (m), (5.33)
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and then computing the matrix R(hdvn;, hdhn,,tozn;) as described in Chap-
ter 4.

Compute the sighting-center at RFM burst (RFM burst) j of trial
n  Compute the TCS coordinates of the eye at RFM burst j of trial n by
using the following equations

3

rex; = rhi; + Y [R(hdvnj, hdhn;, tozn;) km - z€0n. (5.34)
m=1

Where k = 1,2,3 for the TCS x-, y-, and z-coordinates of the sighting-center

and j denotes the RFM burst (RFM burst). The quantity rhy; is the sparker

position computed at the most recent sparker strobe before RFM burst j.

Compute the gaze errors at RFM burst ;

Compute the horizontal gaze error at RFM burst j

Compute the horizontal angle of the line from sighting-center
to target Compute as follows.

180 - 60 Ttar2 — T€2;
) - arctan(———————),
™ Ttar1 — T€1;

losh]— = ( (535)

where losh; is measured in minarc.

Compute measured horizontal gaze angle For the left eye
gah; = lshy,j — lsh,q, (5.36)

and for the right eye
gah; = rshp, — rsh,. (5.37)

Compute the horizontal gaze error at RFM burst 5 As follows
geh; = gah, — losh;. | (5.38)
Compute the vertical gaze error at RFM burst j
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Compute the vertical angle of the line from sighting-center to

target Compute as follows.

180 . 60) i arctan( Ttar3. — TE€3j

’
™ Ttar1 — T€1j

losv; = (
where losv; is measured in minarc.

Compute measured vertical gaze angle As follows

gev; = gav; — losv;.

Compute table gaze positions

Compute the TCS x-coordinate of the table gaze position
following equation

Ttar3 — T€3j
tan((1ae0) * 99v5)

gpr; =rey;+

Compute the TCS y-coordinate of the table gaze position
following equation

tan((lsg-eo) - gah;)

- ) (Ttara - 7’63‘)-
ta'n(( 180-60) : gavi) ’

gpy; =rez; +
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Chapter 6

The Real-Time Line-of-Sight
of the Subject

6.1 Definition of the Line-of-sight

A quantity of major importance in the study of eye movements is the real-
time line-of-sight of a subject. There are several different ways to define this
quantity[?]. Intuitively one could imagine that the line-of-sight should be
the line that connects a point at the center of the fovea with a point on a
target that is currently being fixated by the subject. Unfortunately, there
is no way to determine such a line using the data collected in the Table
Experiments as the foveal position is not measured. Thus one must develop
an operational definition of the line-of-sight which is at once plausible (in the
sense of the definition given above) and also satisfies the criterion that it can
be determined using available Table Experiment data. One needs only to
define the line-of-sight under a given set of circumstances for it to be defined
in all other cases since the line-of-sight is assumed to be fixed relative to the
eye.

The definition stated below shall be adopted in this document. It is based
on the assumption, stated in Chapter 4, that, while the subject fixated his
pupil during the mirror trial, his line-of-sight was parallel to the TCS x-axis.
Furthermore, it will be assumed that during this activity, the subject’s gaze
was very nearly in the "primary position”. This assumption will be impor-
tant for the derivation of the subject’s Helmholtz coordinates. During the
mirror trial of a session while the subject is fixating his pupil, the
line-of-sight of the subject will be defined as the line that is parallel
to the TCS x-axis and passes through the biteboard sighting-center
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position. The line-of-sight at later times is determined by the ro-
tations and translations of the subject’s eye. The unit vector that is
directed along this line in the direction of the positive TCS x-axis can be
computed from Table Experiment data.

At alater RFM burst, therefore, one can (given the instantaneous sighting-
center coordinates and the eye-coil data) determine the unit vector directed
along the line-of-sight defined above. The derivation of the equation for the
line-of-sight unit vector in terms of sighting-center coordinates and eye-coil
data forms the subject of this chapter. As described earlier, the sighting-
center coordinates will be assumed known in all of the derivations presented
below.

6.2 Obtaining the TCS coordinates of the
Line-of-sight Vector

Before proceeding to the derivation of the TCS coordinates of the line-of-
sight unit vector, it is important to describe the relationship between the
placement of the sensor-coil on the subject’s eye and the line-of-sight defined
above. During the mirror calibration trial, when the subject fixates his pupil
in the mirror, the line-of-sight is (by the definition above) parallel to the TCS
x-axis. If the sensor-coil on the eye had been perfectly placed on the eyeball,
the unit vector normal to this coil would be parallel to the line-of-sight and
hence to the TCS x-axis. In this hypothetical situation, this normal vector
would point directly towards magnetic north. The raw horizontal and vertical
readings produced by the RMFM in that case would be 13,500 minarc on
the horizontal meridian and 8,100 minarc on the vertical meridian.

In practice, however, the placment of the sensor-coil is never perfect and
varies from session to session. It is, indeed, the purpose of the mirror cali-
bration trial to determine the horizontal and vertical offsets of the physical
sensor cotl from a logical sensor coil whose unit normal vector is always ex-
actly parallel to the subject’s line-of-sight. Thus all of the equations in the
previous chapters that include eye-coil angle variables are expressed in terms
of the horizontal and vertical angles of this logical eye-coil. These angles are
referenced to magnetic north, i.e. when the logical sensor-coil’s normal vec-
tor points toward magnetic north, both its horizontal and vertical readings
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are defined to be zero. All future references to the "eye-coil” shall mean the
logical sensor coil.

The relationship between the raw measured horizontal and vertical angles
of the physical eye-coil and their counterparts for the logical eye-coil are as
follows

0, = C(8*™) — 977 _ 13500), (6.1)
0, = C(8L*w) — gleffet) _ 8100). (6.2)

where 0}, and 8, are the horizontal and vertical angles of the logical eye-coil
respectivley and are expressed in radians. The angles 6**) and 6\"**) are
the raw horizontal and vertical angles of the physical eye-coil as measured by
the RMFM, and 6{°//*)) and §{//s¢t) are the horizontal and vertical offset
angles between the logical and physical eye-coil that were measured in the
the mirror calibration trial and are expressed in minutes of arc (minarc). The
symbol C represents the factor converting minarc into radians. More details

about how these angles were determined can be found in Chapter 3.

6.2.1 Derivation of the Line-of-sight Vector

To begin the derivation, consider the coordinate system shown in fig. 6.1.
The coordinate axes of this system are parallel to those of the TCS and its
origin is located at the position of the subject’s sighting center at RFM burst
k (the time of this RFM burst will be denoted by tx). The line-of-sight of
the subject at this RFM burst is also shown in the figure and is denoted by
the symbol u. The problem is to express the components of this unit vector
in terms of the angles 8, and 6,.

Determining the components of u can be achieved by considering the
triangles AOB and BOC shown in the figure and by using the condition
that u is a unit vector:

ul +ul +ul=1. (6.3)

Triangle AOB is a right triangle. Its legs have lengths u, and u,. By
considering this triangle it is easy to see that the components u, and u, of
u are related by

u, = uytanb,. (6.4)
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Now consider the right triangle BOC which lies in the xy-plane. The lengths
of its legs are u; and u,. These lengths are related by the horizontal angle

Uy = Ug tan O, (6.5)

By inserting Eqs. 6.4 and 6.5 into Eq. 6.3 the following equation con-
taining only u, is obtained

u? + u?tan 6, + u?tan?@, = 1.
solving for u, gives

1 1
(1 + tan 26, + tan 200)% D(6,0,)

Il

Uy =

Inserting Eq. 6.6 for u, back into the equations for u, and u, gives

tan 6,
Uy = —————
Y D(6,0,)
and
v = tanéd,
7 D(61,6,)

Hence the line-of-sight unit vector u at an arbitrary RFM burst can be
written, in TCS coordinates, as

u= m [itcs + jTcs tan 0, + krcs tan 6] . (6.7)

Where iTcs, JTCs, and krcs are the unit vectors along the x-, y-, and z-axes
of the TCS respectively. ’

6.2.2 The Instantaneous Line-of-sight Velocity Along
a Saccade

The path of a saccade executed by the eye of a subject can be represented

as a trace drawn by the intersection of the instantaneous line-of-sight with a

sphere centered on the eye. It is of some interest in the analysis of the data
collected in the Table Experiments to determine the speed of the line-of-sight
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line-of-sight unit vector

0) y

Figure 6.1: Finding the TCS components of the line-of-sight unit vector
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as it travels along this trace. Note that this quantity will be referenced to
the lab frame and not to the subject’s head.

To compute this quantity, let §t be the time between succesive RFM
bursts expressed in seconds and let uy be the line-of-sight unit vector at
RFM burst k£ and uz4; be the line-of-sight unit vector at burst k£ + 1. The
angle through which the line-of-sight rotates during the time ét is thus

60 = cos T (uy - Ug4r). (6.8)

which is expressed in radians and the instantaneous speed along the saccade

path is, therefore,
86 cos(ug - Uk4q) (6.9)

Vips = 7 = .

&t 5t
This (angular) speed is measured in radians per second.
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Chapter 7

(Gaze Errors and Table Gaze
Positions

Once one has determined the instantaneous line-of-sight of the subject, it is
important, in eye-movement research, to analyze the relative position of this
line with respect to a given target. In many eye-movement experiments, the
subject is asked to direct his gaze toward various objects in his visual field.
In the Table Experiments subjects were instructed to tap various lighted
LED-tipped rods located on the RFM Worktable (see Chapter 3). In these
experiments, determining the position of the instantaneous line-of-sight rel-
ative to the targets is critical to the analysis. Two such types of quantities
were considered in the analysis of Table Experiments: (1) Instantaneous Gaze
Errors, and (2) Instantaneous Table Gaze Positions.

The definition of the horizontal and vertical gaze errors is based on the
idea that, given the coordinates of the instantaneous sighting-center position
and given the target position coordinates, one can determine the line in
space that is directed from the subject’s sighting-center to the target at that
instant. Such a line represents the line-of-sight the subject would have if he
was fixating precisely the mathematical point that represents the position of
the target. This line can be described by its vertical and horizontal angles
in the TCS. The actual line-of-sight can also be determined as described
in Chapter 6 and its vertical and horizontal angles can be determined (in
fact, these are directly measured). The instantaneous horizontal gaze
error is defined as the difference between the horizontal angle of
the actual line-of-sight and the horizontal angle of the line-of-sight
that a subject would have if he were fixating the exact point at
which the target is located, the instantaneous vertical gaze error
is the difference between the vertical angles of these two lines.
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Instantaneous gaze errors therefore provide a measure of the offset of the
instantaneous line-of-sight relative to a given target. Such gaze errors are
generally presented as time traces over the timespan of a trial. Alternatively,
two-dimensional gaze error can be defined as the angle between the line-of-
sight unit vector and the unit vector that points from the sighting-center to
the target.

Instantaneous table gaze positions are defined as the point of
intersection of the instantaneous line-of-sight with a plane that is
parallel to and at a given height above the RFM Worktable surface.
The totality of table gaze position points over all of the RFM bursts of a
trial are presented as curves superimposed on the RFM Worktable surface
as would be seen from a vantage point directly over the worktable surface.
By also superimposing the positions of the targets on this picture, one can
determine such things as fixation positions and times of fixation.

This chapter contains two sections. The first section presents the deriva-
tion of the algorithm for determining the instantaneous gaze errors and the
second contains the derivation of the algorithm for determining table gaze
positions.

7.1 Horizontal and Vertical Gaze Errors

The calculation of the horizontal or vertical gaze error at a given RFM burst
divides (as the above definition implies) into the calculation of the horizontal
or vertical angle of the instantaneous line-of-sight followed by subtraction
of the directly measured instantaneous horizontal or vertical angle of the
subject’s line-of-sight. Thus it will be sufficient to derive expressions for the
horizontal and vertical angles of the line passing through the position of the
target and the instantaneous position of the subject’s sighting center. In the
derivation below, the TCS coordinates of both the target and the sighting
center are assumed known.

The TCS target coordinates were measured before the main sessions of the
Table Experiments began. They were determined by measuring the heights
of the LED-tipped rods and also measuring the height of the low sparker rod
and using the definition of the TCS.

Consider fig. 7.1, the coordinate axes shown in this figure are parallel to
the corresponding TCS axes and the origin is located at the instantaneous
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Figure 7.1: Horizontal and vertical angles of the line from eye to target
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position of the subject’s sighting-center at RFM burst & (time ¢x). The
vectors locating the sighting-center and the target in the TCS are denoted
by ry.(tx) and riage(tx), respectively. It will be convenient to write out the
TCS components of these vectors:

rsc(tk) = zsc(tk)iTCS + ysc(tk)jTCS + Zsc(tk)kTCS (71)

Tiarget =— xta.rgetiTCS + ytargethCS + zta.rget.kTCS- (72)
Now let v(tx) denote the vector whose tail is at the sighting-center position
and whose tip is at the target position:

V(tk) = Tiarget — Fsc(tk) = vz(tk)iTcs + vy(te)jTcs + vo(ti)kTrcs  (7.3)

SO
V2(tk) = Zrarget — Tsc(tk), (7.4)
Vy(tk) = Yearget — Ysc(tk), (7.5)
V2 (tk) = Ziarget — Zsc(tk)- (7.6)

Now consider the right triangle AOC in fig. 3.1. By definition of the
tangent:

Uy(tk) — Ytarget — ysc(tk) (7 7)
vx(tk) Ttarget — xsc(tk) ’ .
and by considering the right triangle AOB in fig. 3.1, the angle 6,,,, can be
expressed in terms of the components of v(¢;) by

t""31'11(0t¢1'r,h) =

vz(tk) — Ztarget — zsc(tk) (7 8)
vx(tk) Ttarget — Isc(tk)
Thus the angles 8,,, , and 0y, , are given by
- t
otar,h = tan -1 (ytarget ySC( k)) (7.9)

xt&rget - xsc(tk)

t‘an(otar,v) =

and

Orar,y = tan ! ( Zacger — Zacl L) ) . (7.10)

Ttarget — xsc(tk)
The two-dimensional gaze error, 624, which is the angle between the in-
stantaneous line-of-sight, u, and the target vector, v, is given by

u-v
00 = i 7.11
2d COs ( |VI )’ ( )
and is expressed here in radians. This quantity gives only the absolute error.
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7.2 Table Gaze Positions

The table gaze position at a given RFM burst is the intersection of the sub-
ject’s line-of-sight, as defined above, with a specified reference plane which is
parallel to the surface of the RFM Worktable and which lies a given distance
above the TCS xy-plane (which is itself parallel to the RFM Worktable sur-
face. See figure 7.2. The collection of these points at all RFM bursts of a
trial describes a curve on this imaginary plane and is an indication of the
where the subject is fixating during the trial.

Figure 7.2 depicts the line-of-sight of a subject at an arbitrary RFM
burst. At such a burst, the subject is not necessarily fixating a target, and
this is so indicated in the figure. Denote the location of the sighting-center
of the subject’s eye in this situation by E, and its TCS coordinates are
(zse(tk), yse(tr),s zse(tk)), where t; is the time-tag of the given RFM burst.
Assume further that the reference plane is a distance a above the TCS xy-
plane (if the reference plane is below the TCS xy-plane, then a will be a
negative number). The line passing through E that is parallel to the TCS
z-axis intersects the reference plane at a point that will be denoted by A.
The table taze position is labeled as B and C is the point of intersection of
the orthographic projection of the line-of-sight (onto a plane which contains
A and is parallel to the TCS xz-plane) and lying in the reference plane.

Thus the line EC is the parallel to the orthographic projection of the line-
of-sight onto the TCS xz-plane and the line AB is parallel to the orthographic
projection of the line-of-sight onto the TCS xy-plane. From the definitions of
the horizontal and vertical angles given in Chapter 2, the angle CAB is the
horizontal eye angle ), and the angle ACE is the negative of the vertical eye
angle 6,. Now, if the TCS coordinates of the table gaze position are denoted
by (z7,yr,2T1), then the coordinates of the other two labeled points in fig.
7.2 are

A= (-’L'sc, Yscs a)a

and
C= (-TT’ Yscy a)'

The length of line AC is, therefore, 21 — 4, the length of BC is yr — y,,
and the length of AE is z,, — a. So, considering the triangles ABC and
ACE, the horizontal and vertical eye angles are related to the coordinates
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Figure 7.2: Finding the table gaze position
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of the line-of-sight and the table gaze position as follows:

_ Y7 = Yaelte)
tan(ah) = o7 — .’L'sc(tk) (712)
and )
_ Zse\lk) — @
—tan(f,) = pum— ol (7.13)

These two equations may be solved for the z and y TCS coordinates of
the table gaze positions giving

TT = Ty — (25 — @) (tan;(ﬂv)) , (7.14)

and

YT = Yoo — (2sc — 0) (:ZEEZ’@) : (7.15)
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Chapter 8

Target and Ocular Vergence

8.1 The Instantaneous Helmholtz Coordinate
System of the Subject

One intuitive goal in processing the RFM data is to determine ”"where the
subject is looking” in real-time. It seems reasonable that such a quantity
depends on the directions of the lines-of-sight of both eyes at a given instant
of time. One quantity, designed to answer this question, will be defined
later in this work. As discussed earlier, the most useful coordinate system
for analyzing quantities that depend on the lines-of-sight of both eyes is
the Helmholtz system. In this section, the definition of, and the supporting
equations for, the origin and axes of a subject’s Helmholtz coordinate system
will be given in terms of the TCS. Since the TCS is a space-fixed coordinate
system and the Helmholtz system is attached to the subject, these quantities
will vary as the subject moves.

Briefly, (see Vol. 1), given that the head and eyes of the subject are fixed,
the axes of the Helmholtz system are defined by the sighting centers of the
two eyes (the line joining these two points is called the baseline) and by a
direction which shall, in this document, be called the ”primary direction”.
The "primary direction” is roughly defined as the direction of the lines-of-
sight of the eyes when the subject sits or stands upright in a comfortable
position and fixates a distant object. In this situation the lines-of-sight are,
very nearly, parallel. Once the Helmholtz axes are determined in the TCS
for a subject at any instant of time, they may be determined at any later
time if the new configuration of the head is known because the Helmholtz
axes are fixed with respect to the head. The definition of these initial axes in
terms of quantities measured by the RFM posed some difficulties that bear
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some discussion.

Recall that the plane that contains the baseline and the lines-of-sight of
the two eyes is called the plane of regard. At a given instant during the time
a subject moves around the RFM Worktable looking at objects, there arises
the mathematical difficulty that there is no plane that contains the baseline
and both lines-of-sight. It is true that these three lines are nearly coplanar
most of the time but such a situation is useless in developing a mathematical
definition. One possibility is to arbitrarity choose one eye and then define the
Helmholtz axes in terms of the baseline and the line-of-sight of the chosen
eye. If this definition is used there remains the difficulty that the line-of-sight
of this eye must be directed along the "primary direction”. Even under these
circumstances, there is no guarantee that the baseline and such a line-of-sight
will be perpendicular as would be needed for defining mutually orthogonal
Helmholtz axes.

The definition given below optimizes the constraints imposed by the dif-
ficulties described above and is consistent with earlier assumptions. That is,
it is based on the assumption that when the subject’s head is supported on
a biteboard during the calibration trials at the beginning of a session, the
line-of-sight of the subject’s eye is parallel to the TCS x-axis. This assump-
tion is made regardless of which eye is the focus of the particular calibration
trial. An additional assumption, made here to facilitate the devel-
opment of a suitable definition of the subject’s Helmholtz axes, is
that, when the subject fixates his pupil in the mirror, the line-of-
sight (and hence the TCS x-axis unit vector) is directed along the
"primary direction”. It is further assumed that the line-of-sight
and the baseline are very nearly perpendicular in this situation.
The second assumption allows the definition of one of the Helmholtz axes to
be defined as the component of the TCS x-axis unit vector that is orthogonal
to the baseline and that lies in the plane that contains both the baseline and
the line-of-sight. This vector component will be both perpendicular to the
baseline and will, very nearly, point along the "primary direction”.

Given the above motivation, the axes of the subject’s Helmholtz coordi-
nate system while the subject’s head is supported on the biteboard during
the mirror trials of a session are defined as follows. The Helmholtz y-axis
unit vector is a vector that lies along the line joining the sighting centers of
the two eyes and points from the subject’s left eye to his right eye (see Fig.
8.1). Letting rer be the vector that locates the sighting center of the sub-
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Figure 8.1: The helmholtz coordinate axes
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ject’s right eye while on the biteboard and letting r.,;, be the corresponding
vector for the left eye, the y-axis unit vector is given by

. TesR — Tebl
YHO = ————. (8.1)
ITesr — TeoL |

The Helmholtz x-axis unit vector is obtained by Gram-Schmidt orthogonal-
ization of this vector and the TCS x-axis unit vector, i7¢s:

itcs — (itcs - YHo)VHO (8.2)
lircs — (itcs - F10)¥ ol

XHo =

And finally the z-axis unit vector is obtained from the cross product of these
two vectors
ZHo = YHo X XHo, (8.3)

where the conventional right-hand-rule is used to determine the direction
of this cross product. These equations give the x-, y-, and z-axes of the
Helmholtz system relative to the TCS in the situation in which the subject’s
head is supported on a biteboard during the mirror trials of a session.

When the subject is free to move around inside the RFM chamber during
subsequent trials, the Helmholtz axes move with his head. Hence, at an
arbitrary burst of the RFM, the Helmholtz coordinate axes undergo the same
rotations as the subject’s head. Thus the instantaneous Helmholtz axes are
given by

iH = R(eh, 01,, 9:)R;1 (ahos 01}01 oto))’EHOv (84)
yH = R(oh,ovaot)Rgl (oho’avoaetO)yHO, (85)
EH = R(Oh, 0,,, 0t)R;1(9ho, ouo, 0!0)21'10- (86)

Where (04,0,,60,) are the head-coil angles recorded at the RFM burst and
(6ho, 010, 01,) are the head-coil angles recorded during the mirror calibration
trials.

8.2 Target Vergence

In many eye movement experiments, one interesting analysis quantity is the
target vergence. Target vergence, 6,,, is defined as the angle sub-
tended at a given target by the sighting centers of the two eyes of
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the subject. The target vergence is independent of the directions of the
lines-of-sight of the eyes and is usually used for comparison with some mea-
sure of where the subject is fixating or for comparison with some other eye
movement behavior. Calculating the instantaneous target vergence is quite
easy and can be performed directly in TCS coordinates.

Denoting by rer and regr the vectors that locate the sighting centers of
the left and right eyes in the TCS at an arbitrary RFM burst respectively,
and denoting by riar the vector that locates the target in the TCS, the vector
whose tail lies at the target and whose tip lies at the sighting center of the
subject’s left eye is given by

XL = I'eL - rtar, (8-7)
and the corresponding vector for the right eye is
XR = TeR — Ttar- (8.8)

The plane defined by the two sighting centers and the target contains both
of the above vectors. The scalar product of these vectors is, by definition of
this product

XL - XR = |XL||XR|cos(8s). (8.9)

Hence the target vergence angle is given by

8, = cos ~} ((l'eL ~ Ttar) - (TeR — rtar)) . (8.10)

'reL - I't:ar”reR - rtar'

See Fig. 8.2.

8.3 Ocular Vergence

The ocular vergence of a subject is a measure of whether a subject is fixating
an object that is nearby or far away. The horizontal ocular vergence
is defined to be the difference between the azimuths (H,, or the
second helmholtz angles) of the left and right eyes. The vertical
ocular vergence is the angle between the planes of regard of the left
and right eyes or equivalently, the difference between the elevations
(H;, or the first helmholtz angles) of the left and right eyes. At each
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Figure 8.2: Definition of the target vergence angle
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RFM burst, there exists a set of helmholtz axes and a line-of-sight unit
vector for each eye. The components of each of the unit vectors along the
instantaneous helmholtz axes as well as the line-of-sight unit vector for each
eye is known in terms of the (static) TCS basis. Thus, it is a simple matter to
find the components of the lines-of-sight unit vectors in the helmholtz system
and once these are known, the helmholtz angles of each can be computed.
The two pairs of helmholtz angles, (H,1 and Hzy, for left eyeand H,g and Hyr
for right eye) can then be used to determine the instantaneous horizontal and
vertical ocular vergence of the subject. The derivations of these quantities
are presented below.

8.3.1 Determining the Helmholtz Angles of the Line-
of-sight unit vector

The expression for the TCS components of the instantaneous line-of-sight
unit vector for a given eye was derived earlier and is given by Eq. 6.7. The
components of the helmholtz unit vectors in the TCS are given in Eqs. 8.4,
8.5, and 8.6. So, if the line-of-sight vector in TCS coordinates is denoted by
u, and the helmholtz unit vectors are denoted by Xy, yH, and Zy, then the
helmholtz components of u are given at time t by

uM(t) = u- zu(t),vl)(t) = u-yu(t),and W¥(t) = u-zu(t). (8.11)

T

These components u{f)(t), u{F)(t), and u{#)(t) can also be expressed in terms

T

of the helmholtz angles of u by examining fig. 4.7 in Chapter 4. These
expressions are

ulH)(t) = cos Hy cos H,, (8.12)
ulH)(t) = sin Hy, (8.13)

and
uf)(t) = sin H, cos H,. (8.14)

Note that the value of r in fig. 4.7 is unity here because u is a unit vector.
Eqgs. 8.12, 8.13, and 8.14 can be inverted to obtain H; and H, in terms
of ulfD(t), ulf(t), and ul¥)(t) as follows. Adding the first and third of these

equations eliminates H; so that

cos Hy = [(u(0))? + (u ()] (8.15)

T
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Thus the helmholtz angles can be written in terms of u{f')(¢), u{f)(t), and

ulf)(t) as
- L (W

Hq(t) = tan (ugH)(t)) , (8.16)
and

ugH)(t)
()2 + W)y

Note well that the above equations apply to a single eye only.

Hy(t) = tan ™!

(8.17)

8.3.2 Instantaneous Vertical and Horizontal Ocular
Vergence

Using the definition for the vertical ocular vergence as the elevation (H;r) of
the right eye minus the elevation (Hiy)of the left eye stated at the beginning
of this section and the equations for the helmholtz angles given above, the
instantaneous vertical ocular vergence is given by

o (uR(@) o (uTR()
Vv(t)sz—Hu,:tan ( (HR)(t)) — tan (U:(L,HL)(t)) . (818)

Ur

The instantaneous horizontal ocular vergence is given by the azimuth (H2g)
of the right eye minus the azimuth (H,y) of the left eye:

) =t |0 Y p— 0
A — tan T | —tan 1
[(u(zHR)(t))z + (ugHR)(t))2]5 [(ua(UHL)(t))z + (ugHL)(t))z] 2
(8.19)

8.4 The Instantaneous Cyclopean View

In an attempt to determine "where the subject is looking” in real time, it
is useful to define a single point in space which corresponds roughly to the
center of the "circle of least confusion” of a focused pencil of light rays in
geometrical optics. In this section, such a point is defined and the equations
required for its computation are presented.
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At a given instant of time, the lines-of-sight of the two eyes define two
lines in space. In practice, these lines almost never intersect but they (usu-
ally) narrowly miss one another. It seems reasonable that a point midway
between the closest approach of the two lines could serve as a figure-of-merit
in estimating "where the subject is looking” at a given instant. Thus the
instantaneous ”binocular gaze point” is defined as the midpoint of
the line joining the pair of points, each of which is on a different
line-of-sight, whose distance from each other is smaller than for any
other pair of points. The line joining these two points is perpendicular to
both lines-of-sight simultaneously as will be shown below.

Once this point is determined, an instantaneous "cyclopean view” unit
vector can be defined as a unit vector that is directed from the midpoint
of the subject’s baseline to the instantaneous "binocular gaze point”. The
equations for the computation of the components of this unit vector will also
be presented in this section.

8.4.1 The Instantaneous ”Binocular Gaze Point”

According to the above definition, the "binocular gaze point” is the midpoint
of the shortest line connecting a pair of points, one point lying on the line-
of-sight of the right eye and the other on the line-of-sight of the left eye.
The derivation of the TCS coordinates of this point will be presented in
several stages. First, the each of the lines in space corresponding to the
instantaneous lines-of-sight of each eye will be expressed in terms of a single
parameter. This can be done because a line is one-dimensional. Hence, an
arbitrary point on the line-of-sight of, say, the left eye will correspond to
a unique value of a parameter (which will be denoted by s;). There will
be a similar parameter for the line-of-sight of the right eye (s,). Once these
parametrizations are defined, the Euclidean distance between any two points,
one lying on the left-eye line-of-sight and one lying on the right-eye line-of-
sight, can be cast as a function of two variables d(s,,s;). The values of s,
and s; for which this distance function is minimized is then determined by
the methods of elementary calculus.
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Parametrization of the line-of-sight

Since the TCS coordinates of both the sighting-center of the eye, (re), and the
line-of-sight unit vector, (u), are assumed calculated, the parametrization of
the line-of-sight can be simply obtained. Figure 4.3 shows the sighting-center
of a given eye along with the line-of-sight. The vector r locates an arbitrary
point lying on the line-of-sight and a distance s from the sighting-center. The
vector that stretches from the sighting-center to the arbitrary point is susor
is simply the vector sum of re and su. Therefore the parametric relationship
between an arbitrary point on the line-of-sight and its distance s from the
sighting-center is

r(s) = re + su. (8.20)

Hence, at any instant of time there is such a relationship for each eye

rR(SR) = reR + SRuR (821)
rL(sy) = reL + spuL

Finding the line-of-closest approach

Picking two arbitrary points, each lying on a different line-of-sight, corre-
sponds to a unique ordered-pair of values (sg,sr). As long as the distances
are restricted to positive values, situations in which the subject looks out
the back of his head are excluded. No such restriction will be assumed here,
however. The euclidean distance between two such point is given by

d(sr,sL) = |[rr(sr) — rL(sL)]|- (8.22)

It will be more convenient, for calculational purposes, to work with the square
of this distance. Since it is always positive, minimizing the square of d will
minimize d as well. So define the distance-squared function

D(sp,s1) = d*(sr,s1) = [rr(sr) — ri(st)|” = (rr(sr)—rL(s1))-(rR(sR)—TL(SL))
(8.23)
To find the values s and s{™ such that D(s&,s{™) is a minimum,
the following conditions must be met

0D 0D
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point on line-of-sight
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Figure 8.3: Parametrization of the line-of-sight
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Using Eq. 8.23 these derivatives become

oD _ ., (orr(ss)
aSR N asR

) - (rr(sr) — rr(sw)) (8.25)

and

oD . (dry(sy)
»_ (#) - (rr(sR) — rL(s1)). (8.26)

From Egs. 8.21 the derivatives in the last equalities of the above equations
can be written as

Orr(sm) _ 0 (8.27)
0sp
and 5
ro(se) _ o (8.28)
dsy,
Thus, the minimization conditions satisfied by s(Rm) and syn) become
ur:(rr(s"”) - ro(s{)) = 0 (8.29)
and
ug(rr(s§”) — r(sf™)) = 0. (8.30)
Since rr(si) and rp(s™) are vectors that locate the pair of points on

the lines-of-sight that are closest to each other, the vector rr (si) — rL(s(Lm))

is the vector along the line that joins these points. The above equations
demand that this line be perpendicular to both lines of sight simultaneously,
see fig. 8.4.

Solving for s and s{™

Equations 8.29 and 8.30 provide a system of two equations in two unknowns
for the values of sg”) and s{™. The solutions are

g = (romlmimin b s
and
S(Lm) - _ (b-ur)(ur -uL) — (b -ug) . (8.32)

1 — (uR - ur)?
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Where

b = rer — reL (8.33)
is a vector lying along the subject’s baseline. The vectors
(m) (m)
rR(SR ) zreR+3R uR

rn(sy™) = rer + s{uy

locate the points on the lines-of-sight shown in fig. 8.4.

Finding the ”Binocular Gaze Point”

The midpoint of the line joining the points located by the vectors in Egs.
8.34 is the "binocular gaze point” and is given by the average of these two
vectors

1 m m
IBGP = '2-(1‘R(S§z N 4 rL(sT™M)). (8.35)

Substituting the expressions for rr(s$7) and ri(s{™) into the above equa-

tion gives, after some rearrangement

1 m m
rBGP = rcyc + 5(3% ug + sf™uy,). (8.36)

Where rcyc is the midpoint of the subject’s baseline

DO =

rcyc = = (rer + reL)- (8.37)

The ”cyclopean direction”

The vector that begins at the midpoint of the subject’s baseline and ends at
the "binocular gaze point” can be termed the "cyclopean direction”. This
vector provides a rough, intuitive measure of ”"where the subject is looking”
at each instant of time. The expression for the ”"cyclopean direction” can
instantly be found from Eq. 8.36

1 m m
XCcyc =rBGP —I'cyc = 5(8&; Jug + s(L )uL). (8.38)
The unit vector along this direction is given by
XcYyc
ucyc = . (8.39)
Ixcyc]
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closest pair of points

N

Figure 8.4: Closest approach line is orthogonal to both lines-of-sight
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Appendix A

Determination of the
Sighting-Center with Subject
on the Biteboard

This appendix contains a description of the method used to obtain the
sighting-center of the eye while the subject is on the biteboard. As noted in
Chapter 4, this determination is critical for determining the position of the
eye in real time. The details of the SCS to TCS transformation, described
in the same chapter, will also be given here.

A.1 Determining the Sighting-Center of the
Eye

The concept of a point in the human eye that is fixed in relation to the head
and that lies along the line-of-sight is founded in previous work [see ref.],
at least for horizontal movements of the eye in its orbit. In that work this
point was found to be approximately 13.5 mm behind the front surface of
the subject’s cornea along the line-of-sight.

The method used in the Table Experiments for obtaining the sighting-
center was simple and direct. An apparatus was constructed that attached
to the biteboard and consisted of a cylindrical tube having sighting holes in
its ends. The tube was mounted on an apparatus that contained instruments
for moving the tube in three dimensions with high precision and such that
the axis of the tube was parallel to the plane of the RFM Worktable (i.e.
parallel to the xy-plane of the TCS). When the subject sighted through the
tube at an LED located behind an aperture at the far end of the table, this
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ensured that the subject’s line-of-sight was coincident with the axis of the
sighting-tube and parallel to the TCS x-axis.

The specific procedure was as follows. The sighting-center of each eye was
measured separately. The subject was placed on the biteboard which was
attached to the RFM Worktable. The tube apparatus was also attached to
the table. The subject, with one eye open, carefully positioned the sighting-
tube such that the LED was clearly visible through the pair of sighting holes.
The subject then closed his eye and the experimenter moved the sighting-
tube only along the negative TCS x-axis toward this closed eye until its near
end just touched the eyelid. The subject then got off the biteboard and a
sparker was placed at the estimated position of the sighting-center. This was
relatively easy to do accurately because the tube was constructed so that a
sparker could be mounted on it such that the sparker was precisely 14 mm
from the end of the tube that touched the subject’s eyelid. The figure of 14
mm differs from the 13.5 mm stated above because 0.5 mm was allowed for
the thickness of the eyelid. Sparker data were then collected. This position
of the sparker is assumed to coincide reasonably well with the sighting-center
of the subject.

A.2 Details of the SCS to TCS Transforma-
tion

In this section, the actual positions of the eighteen sparkers used in obtaining
the matrix of transformation between the Sparker Coordinate System and
the Table Coordinate System will be given as well as the numerical value of
the matrix of transformation.

Sparkers of two different heights were used to collect sparker data. The
"low sparker”, when placed in a hole on the RFM Worktable was located
at z = 0 mm (by definition) in TCS coordinates. The "high sparker” was
located at z = 198.12 mm under the same conditions. Both types of sparkers
were placed at nine different locations on the RFM Worktable at different
times. Figure A.l1 shows a schematic representation of the RFM Worktable.
The circles represent the holes on the table and there are seven holes rep-
resented with gray circles. These are the holes in which contained both
sparker types. The black circle represents the hole in which the low sparker
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was placed twice, once at the beginning of the sparker data collecting session
and once at the end after the temperature of the RFM chamber had changed.

As explained in the main text, readings were collected separately for each
sparker and used to determine the matrix A of transformation between the
SCS and the TCS. The actual matrix was as follows

+0.02538 +0.97742 —0.00507 —852.425

—0.97629 +0.04559 +0.03743 +431.298
A= . (A1)
—0.05069 —0.01087 —0.97300 +1096.13
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table x-axis
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Figure A.1: Placement of the sparkers
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Appendix B

Vectors and Matrices

B.1 Vectors

This section is devoted to the subject of vectors. The mathematical equations
that are presented in chapter 4 are most simply and elegantly derived using
the concept of vectors. Vectors are also useful because they allow a simple
mental picture of the experimental situation. The following discussion of
vectors is by no means an exhaustive presentation of the subject but contains
only those facts about vectors needed for the mathematics developed in the
main text (most notably, in Chapter 4).

To begin, a vector is a quantity that has a length (which is a
number) and a direction. A vector is represented by an arrow whose
direction is the same as that of the vector and whose length is proportional
(for most cases here, equal) to the length of the vector. The point in space
where the arrowhead is located is called the ”tip” of the vector and the other
end of the arrow is called the "tail”.

A particular type of vector that is important for this work is the dis-
placement vector. This type of vector is defined by two points in space, one
at which the tail of the vector is located and the other at which the tip is
located. The vector stretches in a straight line from its tail at the first point
to its tip at the second and points in that direction. The length of such a
vector is the straight-line distance from the first point to the second. This is
the only type of vector that is used in the main text. A special case of the
displacement vector is the position vector whose tail is at the origin of the
coordinate system. Such a vector is used to locate a point in space relative
to some coordinate system. The tip and tail concepts are independent of any
coordinate system.

One other important term concerning vectors is the ”unit vector”. A
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unit vector has by definition a length equal to one unit. In this document all
mathematical symbols that denote vector quantities will appear in bold-face
type. See fig. B.1 for pictures explaining the concept of vectors.

B.1.1 Components of a Vector

A vector can also be represented relative to a given coordinate system using
the concept of "components”. Given three mutually perpendicular coordi-
nate axes, say z, ¥, and z, and a vector whose tail is at the origin and whose
tip is at the point (zo, yo, 20) (a position vector) the x-component of the vec-
tor is xg, the y-component is yo, and the z-component is zo. The general
x-component of a vector is the difference between the coordinate of the in-
tersection of the x-axis with a perpendicular line from the tip of the vector
and the corresponding coordinate associated with the tail of the vector, and
similarly for the y- and z-axes. See fig. B.2.

Three special unit vectors are generally used in conjunction with vector
components. These are 1, j, and k which are dimensionless unit vectors
that point along the positive x-axis, y-axis, and z-axis respectively. Thus an
arbitrary vector can be written mathematically in terms of its components
as

A=A+ Aj+ Ak

with the coefficients of i, j, and k being the x-, y-, and z-components of A
respectively.

B.1.2 Addition of vectors

Vectors may be added and subtracted. The critical thing to know here is
that a vector may be translated along the direction it points and remain
unchanged. That is, after the translation it has the same length and points
in the same direction. It may also be translated perpendicular to its direction
and remain unchanged. It is essential to remember that a vector has only
two attributes: length and direction. Any combination of such translations
leaves these vector attributes unchanged.

Thus, given two vectors, they may be added by first translating one of
the vectors until its tail lies at the same point as the tip of the other vector.
The vector sum of the two vectors is then obtained by constructing a vector
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(a) The length of the vector is
the distance from tail to tip
(arrowhead)

—>

(b) These two vectors are the
same because they have the
same length and direction

Figure B.1: Vectors have both length and direction
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AX

Figure B.2: Vectors can be described by components
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whose tail is at the tail of the first vector and whose tip is at the tip of the
second vector. See fig. B.3. '

The vector sum of two vectors that are expressed in terms of their com-
ponents is itself expressed in terms of its components as follows. Given two
vectors,

and

B = B,i + B,j + B.k,

the vector sum is
A +B = (A, + B,)i+(A, + B,)j + (A, + B.)k.

Subtraction of two vectors is a special case of addition: A—B = A + (—B),
where the negative of a vector is obtained by reversing its direction, (i.e. in-
terchanging its tip and tail).

B.1.3 Dot and Cross Products of Vectors

There are two ways that a pair of vectors can be multiplied. The dot product
of two vectors yields a scalar number and the cross product yields another
vector. Both types of multiplication will be described briefly below.

The dot product of two vectors is equal to product of their magnitudes
times the cosine of the small angle () between them in the plane that con-
tains both vectors. In symbols

A -B = |A||B|cos(0).

The symbol |A| represents the length of the vector A. In terms of compo-
nents, the dot product is given by

A-B=A,B, +A,B, + A,B,.

The cross product of two vectors is itself a vector. Its length is given by
the length of the first vector times the length of the second vector times the
sine of the small angle (6) between them in the plane that contains them
both:

A x B = |A||B|sin(6).
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tail of A

Figure B.3: Vector addition
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The direction of the cross product vector is given by the "right-hand rule”
(RHR). Point the finger of the right hand in the direction of the vector that
is the first factor in the cross product and orient it so that the fingers may
curl toward the direction of the other vector (this may only be done in one
way without serious injury) then the thumb will point in the direction of the
cross product vector. See fig. B.4.

Two facts about these products will be important later. The dot product
of two perpendicular vectors is zero, and the cross product of two parallel
vectors is the zero vector (zero length and direction undefined).

B.2 Matrices

In this section, some elementary properties of matrices will be described.
Only those properties necessary to understand their use in the main text will
be given. The first section contains the definition of a matrix and how its
elements are labeled.-The second section defines the types of operations that
can be performed with matrices, i.e. addition, multiplication, transpose, and
inverse.

B.2.1 Definition of a Matrix

A matrix is a rectangular array of numbers. Each individual number in
the matrix is called an element of the matrix. The rectangular array consists
of a number of rows and columns. The number of rows is called the order of
the matrix and the numbers of columns is called the degree of the matrix.
For example, the matrix A below,

3 4 1
A=|259 , (B.1)
417

DO R

has 3 rows and 4 columns. Thus its order is 3 and its degree is 4. The size of
the matrix is defined by first giving its degree and then its order. The above
matrix is said to be a 3 x 4 matrix.

The number 9 occupies the position in the second row and the third
column. This element of the matrix A is labeled by its row and column
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Figure B.4: Dot and cross products of vectors

122



number as in the following equation
Ay =9. (B.2)
Indeed, one can write abstractly

All A12 A13 A14
A = A21 A22 A23 A24 . (B3)
A31 A32 A33 A34

A matrix having the same number of rows as columns is called a square
matrix. A special type of square matrix called the identity or unit matrix is
characterized by having ones on the diagonal and zeros elsewhere, the 3 x 3
unit matrix is shown below.

100
I={o10]. (B.4)
00 1

This type of matrix is important in matrix multiplication.

B.2.2 Operations with Matrices
Matrix Addition

Matrix addition is defined for two matrices only if they have the same degree
and order. Given two N x M matrices, A and B, their sum, C, has elements

equal to .
Ci; = Ai; + By, (B.5)

where 1 = 1,..., N, and y = 1,..., M which is written in matrix notation as

C=A+B. (B.6)

That is, the 7, j element (the element occupying the :** row and j** column)
of C is the sum of the 7, element of A and the 7, j element of B.
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Matrix Multiplication

There are two types of matrix multiplication. The first type, called scalar
multiplication, is the product of a matrix with a scalar (i.e. an ordinary
number). The result of such a product is a matrix having the same degree
and order as the matrix involved in the product. Thus, given an N x M
matrix, A, and a number ¢, the product of these, C, is

C,’j = CA,']', (B7)
where : = 1,..., N, and j = 1, ..., M, which is written in matrix form as
C = cA. (B.8)

The other type of matrix multiplication, called ordinary matrix multipli-
cation, is the product of two matrices. This type of product is not defined
for any two matrices. If '

C = AB, (B.9)

then the number of columns (order) of A must equal the number of rows
(degree) of B. Therefore, letting the degree and order of A be M x N and
that of B be N x P, then C is a matrix of degree and order M x P whose

element are N
Ci; = Z AixBy;, (B.10)

k=1
and 7 = 1,..., M, and j = 1,..., P. The above procedure can be described
as follows. The 7,j element of the product matrix is formed from the 2%
row of the first matrix (A) in the product and from the j** column of the
second matrix (B) in the product. This row and this column each have the
same number of elements. The product element is obtained by forming the
product of the first element of the row and the first element of the column,
then forming the product of the second element of the row and the second
element of the column, and so forth and then summing all of these products.
One very important point about this type of matrix product is that it is

generally not commutative. That is, AB # BA, in general.

Transpose and Inverse of a Matrix

The transpose of a matrix is the operation whereby the rows and columns
of the matrix are interchanged. Given an N x M matrix A, the transpose
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matrix, B, has the following elements:
Bi; = Aji. ' (B.11)

The matrix B has degree and order of M x N, the reverse of the matrix A.
In matrix notation this is written as

B = AT (B.12)

The inverse of a matrix A is defined as the matrix, that when multiplied
by the original matrix, yields the unit matrix. It is important to note that
inverses are only defined for square matrices. Thus if A is an N x N matrix
and A~! is its inverse, then

AAT = AT"A=1. (B.13)

The procedure for obtaining the inverse of a matrix is much more complex
than the operations described above and will not be given here. It is not
important for understanding the material in the main text that involves
matrices.

Performing the above operations on products of several matrices must be
done carefully because of the noncommutative property of matrix multiplica-
tion. Thus, the transpose or inverse of a product of several matrices is equal
to the transpose or inverse of the individual matrices multiplied together in
reverse order. In matrix notation this reads as

(AB---2)T =Zz7... BTAT, (B.14)
for the transpose, and
(AB---Z)y'=2"1...B7'A7", (B.15)

for the inverse.
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Appendix C

The Rotation Formula

In this appendix, the basic equation used to obtain the rotation matrices in
the main text will be derived. This equation is called the "rotation formula”.
The derivation of this equation follows very closely that given in the book
entitled Mechanics by Herbert Goldstein (Addison Wesley, New York, 1980).

C.1 The Rotation Formula

The rotation formula gives the components of the position vector that has
been rotated in the left-handed sense about a unit vector # through an angle
®. See fig. C.1. Figures C.1 and C.2 will be extremely helpful in what
follows. The rotated vector r’ will be written as the sum of three vectors
(shown in fig. C.1)

r' = ON + NV + V§. (C.1)

The rotation formula will be derived by writing each of these vectors in terms
of r, i, and ®. The distance between points O and N has the magnitude (by

the properties of dot products) fi-r so that the vector ON can be written as
ON = (i - r)h. (C.2)
From fig. C.1 one sees that
r=0ON + NP. (C.3)
thus, using Eq. C.2 and solving for NP gives
NB=r— (i r)h. (C.4)
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Figure C.1: The overall view
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Figure C.2: Top view
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But its length is the same as that of the vectors ]_Va and r x A, see fig. C.2.
From this figure one can see that the vectors NV and m form the legs of a
right triangle whose hypotenuse is the vector ]_\7—@3 The lengths of NV and
m are equal to the length of N@ times cos ® and sin ® respectively. In

equation form
——) —
INVI - IN@"

73| = V3

The double vertical bar symbols around the vector denote "length of”. And

since
NG| =

one can express the lengths of the two leg vectors as

cos D, (C.5)

and

sin . | (C.6)

[r — (A r)A| = |r x i, (C.7)

IW‘ = |r — (4 - r)fi| cos &, (C.8)

and

Vo

Since the vectors under the ”length of” symbols on the right sides of the
above two equations point in the direction appropriate to the vectors on the
left sides, one has

= |r x fi]sin 9. (C.9)

NV = (r — (A - r)i)cos ®, (C.10)

and

VO =(rxf)sin®. (C.11)
Now inserting Egs. C.2, C.10, and C.11 into Eq. C.1 gives

r'=(@f-r)i+(r— (A -r)i)cos® + (r x f)sin d. (C.12)
After a little rearrangement, one has the rotation formula:

r=rcos®+A(h -r)(l —cos®P)+ (r x i)sind. (C.13)
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Supplement: Table Coordinates from Sparker
Data Using Any Three Microphones

1 Introduction

This document presents the algorithm for processing Sparker Data of the Mary-
land Revolving-Field Monitor (RFM) to obtain the sparker location in Table
Coordinates when using the sparker distance data from any three of the four mi-
crophones. The description presented below is not meant to be self—contained.
All of the background information needed to understand the material presented
here is contained in Center for Automation Research Technical Report entitled
“The Maryland Revolving-Field Monitor: Theory of the Instrument and Pro-
cessing Its Data,” (CAR-TR-711) by M. Edwards, Z. Pizlo, C.J. Erkelens, H.
Collewijn, J. Epelboim, E. Kowler, M.R. Stepanov, and R.M. Steinman. That
Technical Report will be referred to here as the “green book.”

In all Table Experiments of the RFM in which the subject’s head is free, the
head position is located using a sparker rod that emits a sound detected by each
of four microphones. At a rate of 61 times per second, the sparker circuitry ap-
plies a high—voltage across a small air gap on the end of the sparker rod causing
a high-pitched sound to be emitted. The time delay between the application
of the voltage and receipt of the sound at a given microphone is proportional
to the distance between the end of the sparker rod and that microphone. The
four microphones are attached to an approximately square frame which is, itself,
located above the wooden cubical frame on which the wires that produce the
magnetic field within the chamber are wound. Each microphone is labeled with
a letter (i.e., A, B, C, and D.)

Any three out of the four distances, d;, 1 = A, B, C, or D, from the sparker
rod to each microphone can be used to determine the coordinates of the end of
the sparker rod in the Table Coordinate System (TCS). It is important to be
able to use the data from any subset of three out of the four microphones since
sometimes the data from one of them can be corrupted. Additional information
required to determine the TCS coordinates includes the distances between each
pair of microphones, scale factors that convert the distances d; into millimeter
units, and the matrix (referred to hereafter as A) that transforms a point ex-

130



Supplement 131

pressed in the Sparker Coordinate System (SCS) coordinates into one expressed
in the TCS. Both the SCS and the TCS are defined below but the reader should
consult the Chapter 2 for a full description of their definition.

2 Determining Table Coordinates from Sparker
Data Using Any Three Microphones

2.1 Overview

This section contains a description of the algorithm for finding the TCS coor-
dinates of the sparker rod using the data from any subset of three out of four
microphones. Describing the algorithm requires the definition of several new
coordinate systems (such as coordinate systems that are similar to the SCS sys-
tem but centered at each of the four microphones.) These systems will also be
defined in this section.

There are two basic steps that must be performed to find the the TCS
coordinates of the sparker given the microphone data, scale factors, distances
between microphones, and the SCS-to-TCS transformation matrix, A. They
are:

e Determine the SCS coordinates from raw Sparker Data,
e Transform the SCS coordinates to the TCS using the matrix A.

The SCS-to-TCS transformation matrix is determined from sparker calibration
data. How this matrix is obtained will be described in detail in a later section.

2.2 Getting Sparker-Rod SCS coordinates from Sparker
Data

The method for determining sparker-rod SCS coordinates using raw data from
any three out of four microphones is as follows. One first first finds the coordi-
nates of the sparker rod in the “primed” coordinate system (PCS). The primed
system is similar to the SCS except that its origin is located at the microphone
diagonally across the microphone frame from the microphone not being used.
The PCS is also a right-handed system in contrast to the SCS. The equations
for the primed-frame coordinates of the sparker rod are simple and easy to
derive. These coordinates are then transformed to the “unprimed” coordinate
system (UCS). This system is identical to the SCS except that its positive z-
axis is in the opposite direction to make it right-handed. After transforming to
the unprimed frame, SCS coordinates are found by reversing the sign of the 2
coordinate.

Before a detailed description of this procedure can be given, definitions for
the primed and unprimed coordinate systems
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The Unprimed Coordinate System

mike B

)

, SCS z-axis

-

\ . Mike ¢ ——
mike D

Figure 1: The Unprimed Coordinate System (UCS). This coordinate system is
identical to the Sparker Coordinate System (SCS) except that its z axis points in
the opposite direction. Thus, while the SCS is a left-handed coordinate system,
the UCS is a right-handed system.

2.2.1 Coordinate System Definitions

To fully define a (cartesian) coordinate system, one must choose a point in
space to be the origin and three mutually perpendicular directions to be used
as coordinate axes. These choices are itemized below for the three coordinates
systems that are important in determining the SCS coordinates from the sparker
data.

It is not generally appreciated that the standard formula for the cross prod-
uct of two vectors in terms of their cartesian components assumes that the
components are referenced to a right-handed coordinate system. This is the
assumption underlying the so—called right-hand-rule that enables one to de-
termine the direction of the cross product. In left-handed coordinate systems,
one must use the left-hand-rule in order to determine the cross—product direc-
tion correctly. In order to eliminate errors arising from this fact, the PCS and
UCS frames will be right~-handed systems. Thus all calculations for determining
sparker coord'mates"' will be performed relative to right-handed systems and only
at the end, when the coordinates are known in the UCS, the SCS coordinates
can be found merely by reversing the sign of the z coordinate.

The definitions of the coordinate systems relevant to finding SCS coordinates
of the sparker rod are as follows.

o Sparker Coordinate System — The origin of the SCS is located at
microphone A. The three microphones, A, B, and D define the zy-plane
of this system and the positive z—axis is defined by the line starting at
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The Primed Coordinate System

mike 1

~

"deleted” mike —A

Figure 2: The Primed Coordinate System (PCS). The origin of the PCS is at
the microphone (“mike 0”) diagonally across from the deleted microphone. The
z—-axis is the line joining mike 0 with the microphone that would be on the right
if one were facing the direction along the line going from mike 0 to the deleted
mike. This is “mike 1.” “Mike 2” is the remaining microphone, i.e., the one
that is not “mike 0”, “mike 1”, or the “deleted mike.”

microphone A and ending at D. The y-axis is a line that lies in the ABD
plane, is perpendicular to the z-axis and whose positive direction is such
that the y coordinate of microphone B is positive. The z-axis is given
by the left-handed cross product of the z and y unit vectors. As such,
its positive direction points toward the magnetic—field volume within the
RFM chamber. The SCS is a left-handed coordinate system.

e The “Unprimed” coordinate system — The UCS is identical to the
SCS except that its positive 2z axis is in the opposite direction. This makes
the UCS a right-handed coordinate system. Both the SCS and the UCS
are illustrated in fig. 1.

e The “Primed” coordinate system — The definition of the PCS de-
pends on which microphone is not being used to determine sparker co-
ordinates (the “deleted” microphone.) The origin of the PCS is located
at the microphone that is diagonally across from the “deleted” micro-
phone. The microphone used as the origin of the PCS will be designated
as microphone 0. The zy plane of the PCS is the plane defined by the
three microphones whose data are being used. The PCS z-axis is along
the direction of the line that joins microphone 0 with microphone 1. To
determine microphone 1, if one stands behind microphone 0 and sights
along the line joining this microphone with the deleted microphone then
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Table 1: This table lists the PCS designations for microphones 0, 1, and 2
for each “deleted” microphone in terms of the usual microphone designations.
Also listed are the distances between microphones in terms of the standards
designations given in the green book.

Deleted Mike Mike 0 Mike 1l Mike 2 d01 d02 d12

mdbc mded mdbd
mded mdda mdac
mdda mdab mdbd
mdbc mdbc mdac

ooy
e Ne!
»oOQuw
Qw» U

microphone 1 is on the right and microphone 2 is on the left. The y-axis
is a line that lies in the PCS zy plane, is perpendicular to the PCS z-axis
and whose positive direction is such that the y coordinate of microphone
2 is positive. The z—axis is given by the right-handed cross product of the
z and y unit vectors. The PCS is also a right-handed coordinate system.
The PCS is illustrated in fig. 2.

Note that the definitions of microphones 0, 1, and 2 depend on which microphone
is “deleted.” Table 1 lists these designations in terms of A, B, C, and D for each
deleted microphone.

The procedure for converting raw sparker data into SCS coordinates is now
much easier to describe. Sparker coordinates are found first in the PCS, they
are then transformed to the UCS, and the SCS coordinates are obtained by
reversing the sign of the UCS 2 coordinate.

2.2.2 Finding the PCS Sparker Coordinates

This paragraph contains the derivation of the equations that give the PCS
sparker coordinates, denoted by (z',y’, 2'), given the sparker distance data (ex-
pressed in sparker units) to microphones 0, 1, and 2 and denoted by rg, ry,
ry, respectively; the scale factors sg, 83, and 33, for microphones 0, 1, and 2,
respectively; and the distances between microphones dy;, doz, dj2. These quan-
tities are illustrated in fig. 3. Note that the mapping between the standard
microphone letter designations and the number 0, 1, and 2 are given in Table 1.

To obtain the PCS coordinates of the sparker rod, one first converts the raw
sparker data into millimeter units using the scale factors determined during the
sparker calibration procedure:

d,' = 8;T; 1= 0, 1,2. (1)

The coordinates of the sparker rod are found by noting that the position of the
rod lies at the intersection of three spheres each of which is centered on one
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sparker rod

Figure 3: This figure illustrates the definitions of the distances (expressed in
millimeters) dp, dy, d2 from the sparker rod to microphones 0, 1, and 2 in the
PCS, respectively. The distances between microphones in the PCS: dp;, do2,
and d;2, are also shown.

of the microphones 0, 1, or 2. The equation of a sphere, whose center is at
(zg, Yo, 29) aid whose radius is R, is given by

(@ —zp)* + (v —9)* + (' — 2)* = R? (2)

where (z',y’, 2') is an arbitrary point on the sphere.

Thus, the coordinates of a given microphone defines the center of a sphere
and the distance from that microphone to the sparker rod is the radius of that
sphere. Denoting the PCS coordinates of microphone i = 0,1,2 as (z},y}, 2;),
the equations that must be satisfied by the coordinates of the sparker rod are

@ -2+ -y + (-2 =d i=0,1,2 (3)

To solve these equations, the PCS coordinates of microphones 0, 1, and 2 must
be found.

The coordinates of the microphones in the PCS can be found if the dis-
tances between the microphones are known. These distances are denoted by
do3, the distance between microphones 0 and 1, by dge, the distance between
microphones 0 and 2, and by d,,, the distance between microphones 1 and 2.
These distances are shown in fig. 4. Now, by construction, microphone 0 is at
the origin of the PCS, so

(20, %0, 20) = (0,0,0). (4)

Furthermore, again by construction, microphone 1 lies on the positive z'-axis
of the PCS. Its 2’ coordinate is just the distance, dp;, from microphone 0 (see
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fig. 4.) Hence, its coordinates in the PCS are
(1,41, 21) = (do1,0,0). (3)

The coordinates of microphone 2 are found by first observing that, by con-
struction, it must lie in the 2'y’ plane. Thus the coordinates may be denoted by
(x5, y5,0) as shown in fig. 4. Then the Pythagorean Theorem applied to triangle

02a gives
2 2
(z3)" + (¥2)° = 3. (6)
Applying the Pythagorean Theorem to triangle 12a gives
(dor = 23)° + (3)° = . M

These two equations can be solved for the unknown coordinates of microphone
2. The result is

, + d3, — d} , ,\2\1/2
= Bitdoody (8- @), ®

where the positive square root is to be taken in the equation for y; above
since, by construction of the PCS, the y’—coordinate of microphone 2 is positive.
To summarize, the coordinates of the microphones 0, 1, and 2, in the PCS are
as follows.

(1:6, y(’)’ z(')) = (Oa 0, O)’
(zll’yiiz;) (dOIaOaO)a

D +d2, — &2 + 2, - 2,0
(212,3/2122) = (‘%1 2‘;)021 12, ldg2 - {%1 2‘;)021 12} ] ,0 (9)

Where the positive square root must be taken.

The PCS coordinates of the sparker rod are then found by solving the Egs.
(8) for the spheres given above. In terms of the PCS microphone coordinates
these equations become the following. For microphone 0:

@)+ @)+ ()" = d3. (10)

For microphone 1: \ \ )
(z' —do)" + (¥)" + ()" = d}. (11)

For microphone 2:

@ -2+ - + () =3 (12)
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(x5 ¥’ 0)

(d 01!010)

point "a"

Figure 4: This figure, which shows a top view of the PCS, illustrates how the
PCS coordinates of microphones 0, 1, and 2 are found.

The solution of these equations gives the rod coordinates which are:

/ ag +dfy —df

r = ——

2do,
' dg+d32—¢€ _21;'21:'
V.= 2y,
1/2
7 = -(4-6)-0)) (13)

Here the negative square root must be taken. This must be the case because
the intersection of three spheres is, in general two points. One of these will be
inside the magnetic field volume (this is the correct one) and the other will be
outside of this volume. Any point that is inside the magnetic—field volume and
expressed in PCS coordinates will have a negative z coordinate.

2.2.3 Transforming Between the Primed and Unprimed Frames

Once the coordinates of the sparker rod are known in the PCS, they must be
transformed to the UCS. This transformation consists of a translation of the
origin of the PCS to the origin of the UCS and a subsequent rotation of the
vector to the sparker rod, expressed in the PCS, into the UCS coordinates.
Figure 5 shows the vectors that locate the sparker rod from both the PCS and
UCS origins. The orgins of the two coordinate systems are connected by a
vector, ro, in the UCS. From the figure it is clear that

r=r,+ro. (14)
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sparker rod

Figure 5: This figure illustrates how the PCS vector that locates the sparker
rod is transformed to the UCS frame.

It is important to remember that the above vectors must all be expressed in the
UCS for the equation to be useful.

The vector rg, which stretches from the orgin of the UCS to the origin of
the PCS can be easily obtained once the coordinates of the microphones in
the UCS have been found. The coordinates of microphones A, B, and D can be
easily found from the measured distances between the microphones and from the
results of section 2.2.2 since the UCS is identical to the PCS when microphone
C is deleted. In this case microphone 0 is A, microphone 1 is D, and microphone
2 is B. Thus the PCS distances are

dp1 = mdda, do2 = mdab, and d;2 = mdbd. (15)

Using these substitutions in Eq. (9) gives

(zAa yAazA) = (O’ O!O)a
(zDa YD, ZD) = (mdda, 0) O),
2 2 2
(zBa YB, ZB) = ((mdda) + (sz;dladz)a E (mdbd) )
|(mdab)? - (a,-,;)’]l/2 ,0) (16)

The coordinates for microphone C are somewhat more problematic. These co-
ordinates can be found using the coordinates of microphones A, B, and D given
above and the measured distance between microphones A and C, mdac. How-
ever, the value obtained for z¢, given the measured value of mdac turns out
to be the square root of a negative number. Furthermore, one finds that, by
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Figure 6: In this figure the vectors locating microphones 0, 1, and 2 of the PCS
are illustrated.

adjusting this measured value by several hundreths of a millimeter, the value
of z¢ can be made to vanish. This adjustment will make no difference in the
results obtained in any RFM experiment since the error in the sparker position
is of the order of at least one millimeter.

Thus the coordinates of microphone C are given by the following formulas
which are found by noting that microphone C

(mdac)? + (mdda)? — (mdcd)?

o = 2 mdda
(mdac?) + (mdab?) — (mdbc?) — 2zczp
Yye =
2yB
zc = 0 17

Where it is understood that the value of mdac used in the above equations is
the adjusted value that makes z¢ vanish. This value is

mdac = 2494.392107. (18)

The analyses of the previous sections has shown how to obtain the r’ vector
only in the PCS. The UCS and PCS versions of this vector are connected by a
rotation transformation, denoted hereafter by R. This matrix can be found if
the unit vectors in the primed coordinate system can be expressed in terms of
the unit vectors in the unprimed system. Now that the vectors locating all four
microphones in the UCS are known (see above), the PCS unit vectors can be
found as follows.

Let the UCS vectors locating microphones 0, 1, and 2 be denoted by rq, ry,
and ry, respectively. see fig. 6. Recalling that microphone 0 is the origin of the
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PCS and that microphone 1 lies along the positive-z PCS axis, then the vector
r; — ro stretches along the positive PCS z' axis from the origin to microphone
1. Thus the PCS z' axis unit vector is

y 1 —To
e = ——. 19
1 |l'1 _ l‘ol ( )
Note that this PCS unit vector is now expressed in terms of vectors known in
the UCS. Next note that the vector xo = rs — rg stretches from microphone 0 to
microphone 2. Since microphone 2 lies in the z'y’ plane of the PCS, the vector
X2 can be written as

X2 = ae; + bej, (20)
taking the dot product of both sides with e} gives
a=e X (21)
Hence
bey = xz — (€} - X2) €. (22)

The constant b can be found by normalization and so

x2 — (€] - x2) €}
Ix2 — (€] - x2) €]

(23)

! —
€y =

The third PCS unit vector is found via the cross product of the the first two
and so the three unit vectors in the PCS are given by

eyl _ ry —Ip
|ry = ro
o, (ra — o) — (€] - (r2 —T0)) €)
|(rz — ro) — (€] - (r2 — ro)) €}
ey = e} xeh (24)

The assignment of 0, 1, and 2 are given in Table 1. The unit vectors in the UCS
are immediately obtained by again remembering that the UCS is identical to
the PCS when microphone C is deleted. In this case, microphone 0 is A, 1 is D,
and 2 is B. Thus the UCS unit vectors are

e D —T4
|rp — ral
e (rp—ra)—(e1-(rp—ra))e;
l(rB —ra) —(e1-(rB —T4))e1]
es = e Xep (25)

The above two sets of equations are the unit vectors for the PCS and UCS
completely in terms of vectors known in the UCS.
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Armed with these unit vectors the rotation matrix can now be found as
follows. The vector r, is known in the PCS and can be written in terms of the
PCS unit vectors

r, =zlel +yie, + z,e5. (26)

These components were found earlier as the coordinates of the sparker rod in
the PCS. This vector is expressed in the UCS as

r, = z,e) + yse2 + 2,€3. (27)
Since these equations represent the same vector, they must be equal so
T,e1 + Yse2 + 2563 = They + Yhey + 2Ly (28)

Successively taking the dot product of both sides of this equation with e;, e2, and
e3 yields equations that give the UCS coordinates of the vector r, completely
in terms of known quantities:

z, = (e1-€)z, +(e1-€3)y, +(e1-¢€3)2,
Ys = (e2-e))z, +(e2-€3)y, + (e2-¢€3) 2,
z, = (ez-e))x, +(e3-e3)y, + (e3-€3) 2. (29)

This can be written in matrix form as r, = Rr! where R is the following 3x3
matrix
e1-e; ei-ey ex-ef
R=| ex-€] ex-€ey, er-€5 |. (30)
ez €] ez-ep ez-ey

Using Eq. (14) the UCS of the sparker rod can be written down completely in
terms of known quantities

z =1z0+ (€e1-€)) Z, + (e1-€3) yg + (e1- €3) 2,

y=yo+(ez-€1)z, + (e2-€3)y, + (€2 - €3) z,

z2=120+ (e3-ey) z, + (e3 - €y) y, + (e3 - €3) 2,. (31)
Once the UCS coordinates are known, the SCS coordinates are found by revers-

ing the sign of the z coordinate. The TCS coordinates can now be obtained as
described in Chapter 2 of the green book.



